How do receptor potentials arise in photoreceptors?

Recommended textbook solutions

How do receptor potentials arise in photoreceptors?

Introduction to Anatomy and Physiology

1st EditionMichelle Provost-Craig, Susan J. Hall, William C. Rose

1,678 solutions

How do receptor potentials arise in photoreceptors?

Essentials of Human Anatomy and Physiology

12th EditionElaine N. Marieb, Suzanne M. Keller

642 solutions

How do receptor potentials arise in photoreceptors?

Anatomy and Physiology

1st EditionOpenStax

599 solutions

How do receptor potentials arise in photoreceptors?

Hole's Essentials of Human Anatomy and Physiology

12th EditionDavid N. Shier, Jackie L. Butler, Ricki Lewis

1,633 solutions

  • School St. John's University
  • Course Title PHS 3104
  • Type

    Notes

  • Pages 1

This preview shows page 1 out of 1 page.

1) How do receptor potentials arise in photoreceptors?

Get answer to your question and much more

2) By what pathway do nerve impulses triggered by an object in the nasal half of the visualfield of the left eye reach the primary visual area of the cortex?

Get answer to your question and much more

End of preview. Want to read the entire page?

Upload your study docs or become a

Course Hero member to access this document

Tags

hair cells, primary visual area

References

  • Abrahamson E.W., Wiesenfeld J.R. (1972). The structure, spectra and reactivity of visual pigments, in: “Handbook of sensory physiology”, v. 7/1, Dartnall, H.J.A., ed., p. 69–121., Springer-Verlag, Berlin - Heidelberg - New York.

    Google Scholar 

  • Applebury M.L., Zuckerman D.M., Lamola A.A., Jovin T.M. (1974).Rhodopsin. Purification and recombination with phospholipids assayed by metarhodopsin I - metarhodopsin II transition. Biochemistry 13, 3448–3458.

    PubMed  CrossRef  CAS  Google Scholar 

  • Arden G.B. (1969). The excitation of photoreceptors, in “Progress in biophysics and molecular biology”, Butler J.A.V. and Nobel D., eds., p. 373–421, Pergamon Press, Oxford — New York.

    Google Scholar 

  • Arden G.B., Bridges C.D.B., Ikeda H., Siegel I.M., (1968). Mode of generation of the early receptor potential. Vision Res., 8, 3–24.

    CrossRef  CAS  Google Scholar 

  • Bennett N., Michel-Villaz M., Dupont Y., (1980). Cyanide dye measurement of a light-induced transient membrane potential associated with the metarhodopsin II intermediate in rod-outer-segment membranes, Eur. J. Biochem., III, 105–110.

    Google Scholar 

  • Bolshakov V.I., Drachev A.L., Drachev L.A., Kalamkarov G.R., Kaulen A.D., Ostrovsky M.A., Skulachev V.P. (1979). Common properties of bacterial and visual rhodopsins: conversion of the light energy into the electric potential, Dokl. Akad. Nauk SSSR, 249, 1462–1466 (In Russian).

    CAS  Google Scholar 

  • Brindley G.S., Gardner-Medvin A.R. (1966). The origin of the early receptor potential of the retina, J. Physiol., 182, 185–194.

    PubMed  CAS  Google Scholar 

  • Brown K.T., Murakami M. (1964). A new receptor potential of the monkey retina with no detectable latency. Nature, 201, 626–628.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cafiso D.S., Hubbell W.L. (1980). Interfacial charge separation in photoreceptor membranes. Photochem, Photobiol., 32, 461–468.

    CrossRef  CAS  Google Scholar 

  • Cohen A.I. (1968). New evidence supporting the linkage to extracellular space of outer segment saccules of frog cones but not rods, J. Cell Biol., 47, 424–444.

    CrossRef  Google Scholar 

  • Cohen A.I. (1970). Further studies on the question of the patency of saccules in outer segments of vertebrate photoreceptors. Vision Res., 10, 445–453.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cone R.A. (1965). The early receptor potential of the vertebrate eye. Cold Spring Harb. Symp. Quant. Biol., 30, 483–490.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cone R.A. (1967). Early receptor potential: photoreversible charge displacement in rhodopsin. Science, 155, 1128–1131.

    PubMed  CrossRef  CAS  Google Scholar 

  • Cone R.A. (1972). Rotation diffusion of rhodopsin in the visual receptor membrane. Nature New. Biol., 236, 39–43

    PubMed  CAS  Google Scholar 

  • Cone R.A., Brown P.K. (1967). Dependance of the early receptor potential on the orientation of rhodopsin. Science, 156, 536.

    Google Scholar 

  • Cone R.A., Pak W.L. (1971). The early receptor potential, in: “Handbook of sensory physiology”, v. 1. Loewenstein W.R., ed., p. 345–365, Springer-Verlag, Berlin — Heidelberg — New York.

    Google Scholar 

  • Debecker J., Zanen A. (1975). Intensity function of the early receptor potential and of the melanin fast photovoltage in the human eye, Vision Res., 15, 101–106.

    PubMed  CrossRef  CAS  Google Scholar 

  • Giulio L., Petrosini L. (1973). Effect of urea on the early receptorpotential, Vision Res., 13, 489–492

    PubMed  CrossRef  CAS  Google Scholar 

  • Goldstein E.B., Wolf B.M. (1973). Regeneration of the green-rod pigment in the isolated frog retina. Vision Res., 13, 527–534.

    PubMed  CrossRef  CAS  Google Scholar 

  • Govardovskii V.I. (1975). On the sites of generation of the early and late receptor potentials in rods. Vision Res., 15, 971–981.

    Google Scholar 

  • Govardovskii V.I. (1976). Lateral diffusion of rhodopsin within the surface membrane of rat retinal rod, Biofizika, 21, 1019–1023 (In Russian).

    PubMed  CAS  Google Scholar 

  • Govardovskii V.I. (1978). The mode of generation of the early receptor and electric model of retina rod, Biofizika, 23, 514–519 (In Russian).

    PubMed  CAS  Google Scholar 

  • Govardovskii V.I., Zueva L.V. (1977). Visual pigments of chicken and pigeon. Vision Res., 17, 537–543.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hagins W.A., Mc. Gaughy R.E. (1967). Molecular and thermal origins of fast photoelectric effects in the squid retina. Science, 157, 813–816.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hagins W.A., Ruppel H. (1971). Fast photoelectric effect and the properties of vertebrate photoreceptors as electric cables, Feder. Proc., 30, 64–68

    CAS  Google Scholar 

  • Hodgkin A.L., O’Bryan P.M. (1977). Internal recording of the early receptor potential in turtle cones, J. Physiol., 267, 737–766.

    PubMed  CAS  Google Scholar 

  • Liebman P.A. (1972). Microspectrophotometry of photoreceptors, in: Handbook of sensory physiology, v. 7/1. Dartnall, H.J.A. ed., p. 481–528, Springer-Verlag, Berlin - Heidelberg - New York.

    Google Scholar 

  • Liebman P.A., Entine G. (1974). Lateral diffusion of visual pigment in photoreceptor disc membranes. Nature, 247, 457–459.

    CrossRef  Google Scholar 

  • Moody M.F., Parriss J.R. (1961). The discrimination of polarized light by Octopus: a behavioural and morphological study, Z. vergl. Physiol., 44, 268–291.

    CrossRef  Google Scholar 

  • Murakami M., Pak W.L. (1970). Intracellularly recorded early receptor potential of the vertebrate photoreceptors. Vision Res., 10, 965–976.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pak W., Cone R.A. (1964). Isolation and identification of the initial peak of the early receptor potential. Nature, 204, 836–838.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pak W.L., Ebrey T.G. (1965), Visual receptor potential observed at sub-zero temperatures. Nature, 205, 484–486.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pak W.L., Rozzi V., Ebrey T.G. (1967). Effect of changes in the chemical environment of the retina on the two components of the early receptor potential. Nature, 219, 109–110.

    CrossRef  Google Scholar 

  • Poo Mu-Ming, Cone R.A. (1974). Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature, 247, 438–441.

    CrossRef  Google Scholar 

  • Rapp J. (1979). The kinetics of intermediate processes in the photolysis of bovine rhodopsin - II. The intermediate decaysequence from lumirhodopsin497 to metarhodopsin33o II, Vision Res., 19, 137–141.

    PubMed  CrossRef  CAS  Google Scholar 

  • Rüppel H. (1975). Membrane structure and transduction mechanism of visual receptors, in; “Photoreceptor optics”. Snyder A.W. and Menzel R., eds. p. 499–512, Springer-Verlag, Berlin — Heidelberg — New York.

    CrossRef  Google Scholar 

  • V. Sengbush G., Stieve H. (1971). Flash photolysis of rhodopsin.II. Measurements on rhodopsin digitonin solutions and fragments of rod outer segments, Ztschr. Naturforsch, 26, 861–862.

    Google Scholar 

  • Smith T.G., Brown J.E. (1966). A photoelectric potential in invertebrate cells. Nature, 212, 1217–1219.

    CrossRef  Google Scholar 

  • Takezoe H., Yu H. (1981). Lateral diffusion of photopigments in photoreceptor disc membrane vesicles by the dynamic Kerr effect. Biochemistry, 20, 5275–5281.

    PubMed  CrossRef  CAS  Google Scholar 

  • Trissl H.W. (1979). Light-induced conformational changes in cattle rhodopsin as probed by measurements of the interface potential, Photochem. Photobiol., 29, 579–588.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wald G., Brown P.K., Gibbons I.R. (1963). The problem of visual excitation, J. Opt. Soc. Amer., 53, 20–35.

    CrossRef  CAS  Google Scholar 

  • Yoshikami S., Hagins W.A. (1973). Control of the dark current in vertebrate rods and cones, in: “Biochemistry and Physiology of Visual Pigments”, Langer H., ed., p. 245–255, Springer- Verlag, Berlin — Heidelberg — New York.

    CrossRef  Google Scholar 

Download references

How do photoreceptors generate action potentials?

In the retina, however, photoreceptors do not exhibit action potentials; rather, light activation causes a graded change in membrane potential and a corresponding change in the rate of transmitter release onto postsynaptic neurons.

Do photoreceptors generate receptor potentials?

Photoreceptors do not fire action potentials; they respond to light changes with graded receptor potentials (depolarization or hyperpolarization). Despite this, the photoreceptors still release glutamate onto the bipolar cells.

Do rods generate receptor potentials?

In the retina of the eye, the receptor potential in the receptors, the rods and cones, causes a decreased release of a transmitter substance (a new stimulus, chemical this time) to the bipolar cells that causes them to generate a receptor potential.

How is action potential generated in the eye?

The Retina. The structure of the eye responsible for converting light waves into action potentials is the retina. The neural layer of the retina is composed of three main types of cells: the photoreceptors, the bipolar neurons and the ganglion cells.