Các dạng toán tìm cực trị biểu thức năm 2024

Các dạng toán tìm cực trị biểu thức năm 2024

Truy cập Website: hoc360.net – Tải tài liệu học tập miễn phí

Group: https://www.facebook.com/groups/tailieutieuhocvathcs/

CHUYÊN ĐỀ : CỰC TRỊ CỦA MỘT BIỂU THỨC

I/ GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦA MỘT BIỂU THỨC

1/ Cho biểu thức f( x ,y,...)

a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu

hai điều kiện sau đây được thoả mãn:

- Với mọi x,y... để f(x,y...) xác định thì :

f(x,y...)

M ( M hằng số) (1)

- Tồn tại xo,yo ... sao cho:

f( xo,yo...) = M (2)

b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu

hai điều kiện sau đây được thoả mãn :

- Với mọi x,y... để f(x,y...) xác định thì :

f(x,y...)

m ( m hằng số) (1’)

- Tồn tại xo,yo ... sao cho:

f( xo,yo...) = m (2’)

2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của

một biểu thức chẳng hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A

0 nhưng chưa thể kết luận được minA = 0 vì không tồn tại giá trị nào của x để

A = 0 ta phải giải như sau:

A \= x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2

2

A \= 2

x -2 = 0

x = 2

Vậy minA = 2 khi chỉ khi x = 2

II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN

1/ Tam thức bậc hai:

Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c .

+ Trường hợp có \(3\) điểm cực trị thì đó là \(x = 0;x = - \sqrt { - \dfrac{b}{{2a}}} ;x = \sqrt { - \dfrac{b}{{2a}}} \)

Dạng 3: Tìm điều kiện của tham số để hàm số nhận điểm cho trước làm điểm cực trị

Phương pháp:

- Bước 1: Tính \(y',y''\).

- Bước 2: Nêu điều kiện để \(x = {x_0}\) là điểm cực trị của hàm số:

+ \(x = {x_0}\) là điểm cực đại nếu \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\)

+ \(x = {x_0}\) là điểm cực tiểu nếu \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) > 0\end{array} \right.\)

- Bước 3: Kết luận.

Dạng 4: Tìm điều kiện của tham số để đồ thị hàm số bậc ba có hai điểm cực trị thỏa mãn điều kiện cho trước

Phương pháp:

- Bước 1: Tính \(y'\).

- Bước 2: Nêu điều kiện để đồ thị hàm số có 2 điểm cực trị thỏa mãn điều kiện:

+ Đồ thị hàm số có 2 điểm cực trị nằm về hai phía trục tung

\( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt trái dấu\( \Leftrightarrow ac < 0\)

+ Đồ thị hàm số có 2 điểm cực trị nằm cùng phía so với trục tung

\( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt cùng dấu\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\P > 0\end{array} \right.\)

+ Đồ thị hàm số có 2 điểm cực trị nằm về bên phải trục tung

\( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt cùng dương \( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\S > 0\\P > 0\end{array} \right.\)

+ Đồ thị hàm số có 2 điểm cực trị nằm về bên trái trục tung

\( \Leftrightarrow y' = 0\) có hai nghiệm phân biệt cùng âm \( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\S < 0\\P > 0\end{array} \right.\)

+ Đồ thị hàm số có 2 điểm cực trị \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)\) thỏa mãn đẳng thức liên hệ giữa \({x_1},{x_2}\) thì ta biến đổi đẳng thức đã cho làm xuất hiện \({x_1} + {x_2},{x_1}.{x_2}\) rồi sử dụng hệ thức Vi-et để thay \(\left\{ \begin{array}{l}{x_1} + {x_2} = S\\{x_1}{x_2} = P\end{array} \right.\) và tìm \(m\).

Dạng 5: Tìm điều kiện của tham số để đồ thị hàm số bậc bốn trùng phương có ba điểm cực trị thỏa mãn điều kiện cho trước

Phương pháp:

- Bước 1: Tính \(y'\).

- Bước 2: Nêu điều kiện để đồ thị hàm số có ba điểm cực trị thỏa mãn điều kiện:

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) lập thành một tam giác vuông (vuông cân)

\( \Leftrightarrow \Delta ABC\) vuông tại \(A \Leftrightarrow \overrightarrow {AB} .\overrightarrow {AC} = 0\) .

Khi đó:

\(y' = 4a{x^3} + 2bx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt { - \dfrac{b}{{2a}}} \end{array} \right.\)\( \Rightarrow A\left( {0;c} \right),B\left( { - \sqrt { - \dfrac{b}{{2a}}} ;c - \dfrac{{{b^2}}}{{4a}}} \right),C\left( {\sqrt { - \dfrac{b}{{2a}}} ;c - \dfrac{{{b^2}}}{{4a}}} \right)\)

\( \Rightarrow \overrightarrow {AB} = \left( { - \sqrt { - \dfrac{b}{{2a}}} ; - \dfrac{{{b^2}}}{{4a}}} \right),\overrightarrow {AC} = \left( {\sqrt { - \dfrac{b}{{2a}}} ; - \dfrac{{{b^2}}}{{4a}}} \right)\)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\ \Leftrightarrow \dfrac{b}{{2a}} + \dfrac{{{b^4}}}{{16{a^2}}} = 0\\ \Leftrightarrow 8ab + {b^4} = 0\\ \Leftrightarrow 8a + b^3 = 0\\ \Leftrightarrow b = -2\sqrt[3]{a}\end{array}\)

Đây là công thức tính nhanh trong bài toán trắc nghiệm.

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác đều \( \Leftrightarrow AB = BC = CA\).

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác có diện tích \({S_0}\) cho trước

\( \Leftrightarrow {S_0} = \dfrac{1}{2}AH.BC\) với \(H\) là trung điểm của \(BC\).

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác có diện tích \({S_0}\) lớn nhất

\( \Leftrightarrow \) Tìm \(\max {S_0}\) với \({S_0} = \dfrac{1}{2}AH.BC,H\) là trung điểm của \(BC\).

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác cân có góc ở đỉnh bằng \(\alpha \) cho trước

\( \Leftrightarrow \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \cos \alpha \)

+ Ba điểm cực trị \(A,B,C\) trong đó \(A\left( {0;c} \right)\) tạo thành tam giác có ba góc nhọn

\( \Leftrightarrow \alpha \) là góc ở đỉnh phải nhọn \( \Leftrightarrow \cos \alpha = \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} > 0\)