Bài tập tìm quỹ tích của một điểm lớp 11 năm 2024

Trên mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức \(z\) thỏa mãn \(\left| {z - i} \right| \le 1\):

  • A Hình tròn tâm \(I\left( {0;\,\,1} \right),\) bán kính \(R = 2.\)
  • B Hình tròn tâm \(I\left( {0;\, - 1} \right),\) bán kính \(R = 1.\)
  • C Hình tròn tâm \(I\left( {1;\,\,0} \right),\) bán kính \(R = 1.\)
  • D Hình tròn tâm \(I\left( {0;\,\,1} \right),\) bán kính \(R = 1.\)

Đáp án: D

Phương pháp giải:

Gọi số phức \(z = x - yi\,\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\)

Biến đổi biểu thức \(\left| {z - i} \right| \le 1\) để tìm quỹ tích của số phức bài cho.

Lời giải chi tiết:

Gọi số phức \(z = x - yi\,\,\,\left( {x,\,\,y \in \mathbb{R}} \right)\)

Ta có: \(\left| {z - i} \right| \le 1\)

\(\begin{array}{l} \Leftrightarrow \left| {x + yi - i} \right| \le 1\\ \Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| \le 1\\ \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} \le 1\end{array}\)

\( \Rightarrow \) Quỹ tích của số phức \(z\) thỏa mãn bài cho là hình tròn tâm \(I\left( {0;\,\,1} \right),\) bán kính \(R = 1.\)

Chọn D.

Đáp án - Lời giải

TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình khai phá dữ liệu và khám phá tri thức. Trong mấy năm gần đây, các nhà nghiên cứu đề xuất các phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ (Fuzzy Rough Set FRS) nhằm nâng cao độ chính xác mô hình phân lớp. Tuy nhiên, số lượng thuộc tính thu được theo tiếp cận FRS chưa tối ưu do ràng buộc giữa các đối tượng trong bảng quyết định chưa được xem xét đầy đủ. Trong bài báo này, chúng tôi đề xuất phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ trực cảm (Intuitionistic Fuzzy Rough Set IFRS) dựa trên các đề xuất mới về hàm thành viên và không thành viên. Kết quả thử nghiệm trên các bộ dữ liệu mẫu cho thấy, số lượng thuộc tính của tập rút gọn theo phương pháp đề xuất giảm đáng kể so với các phương pháp FRS và một số phương pháp IFRS khác.

Trong hệ thống du lịch thông minh, lập lộ trình tự động là một trong những chức năng phức tạp nhưng rất quan trọng và cần thiết cho du khách trước và trong hành trình thăm quan của mình. Chức năng này không chỉ yêu cầu tạo ra phương án lộ trình phù hợp với điều kiện của du khách một cách nhanh chóng, mà còn phải tối ưu về thời gian thăm quan và hiệu quả kinh tế. Trong bài báo này, chúng tôi trình bày một thuật toán lập lộ trình tự động mới dựa trên ý tưởng của bài toán lập lịch TSP (Traveling Salesman Problem) và bổ sung tham số về thời gian du lịch hợp lý, được gọi là TPA (Travel Planning Algorithm). Thuật toán TPA được cài đặt trong hệ thống du lịch thông minh đa nền tảng của tỉnh Thái Nguyên. Dựa vào điểm du lịch được gợi ý trong quá trình lựa chọn điểm thăm quan của du khách, thuật toán TPA hoạt động ổn định và lập được lộ trình du lịch tốt hơn so với chức năng lập lộ trình trong hệ thống du lịch thông minh của TripHunter và Tập đoàn bưu chính viễn thông Việt Nam (VNPT).

Hiện nay, tại chùa Bảo Ninh Sùng Phúc (huyện Chiêm Hóa, Tuyên Quang) còn lưu giữ được tấm bia cổ duy nhất thuộc các tỉnh miền núi phía Bắc nước ta có niên đại từ thời nhà Lý. Nội dung văn bia chép về dòng họ Hà và những đóng góp của dòng họ này đối với vùng đất Vị Long nói riêng và đất nước nói chung ở thế kỷ XI - XII. Trong đó phải kể đến công lao to lớn của nhân vật lịch sử Hà Di Khánh.

Trong bài báo này chúng tôi nghiên cứu các tính chất phi cổ điển như tính chất nén tổng hai mode, nén hiệu hai mode và tính chất phản kết chùm hai mode bậc cao của trạng thái kết hợp cặp thêm và bớt photon hai mode (PAASTMPCS). Các kết quả khảo sát về tính chất nén cho thấy rằng trạng thái PAASTMPCS có tính chất nén tổng hai mode nhưng không có tính chất nén hiệu hai mode. Tính chất nén tổng hai mode của trạng thái PAASTMPCS luôn xuất hiện khi thêm và bớt photon vào trạng thái kết hợp cặp (PCS). Ngoài ra, kết quả khảo sát chỉ ra rằng trạng thái PAASTMPCS còn có tính chất phản kết chùm hai mode bậc cao và tính chất này được tăng cường khi thêm và bớt photon vào PCS. Qua đó, vai trò của việc thêm và bớt photon đã được khẳng định thông qua việc tăng cường tính chất phi cổ điển của trạng thái PAASTMPCS.

Quỹ tích là một tập hợp các điểm trong không gian, thỏa mãn một tính chất, ... Tập hợp các điểm cách đều hai cạnh của một góc là tia phân giác của góc đó.

  1. Phương pháp Bài toán: Cho một hình H , trên hình H có một điểm M . Tìm quỹ tích của điểm M khi trên hình H có một điểm A thay đổi . ( Thường điểm A chạy trên một đường (C ) cho sẵn ). Cách giải :
  • Dựa vào các tính chất đã biết , ta tìm ra một véc tơ cố dịnh nằm trên hình H ( Với điều kiện : véc tơ này có phương song song với đường thẳng kẻ qua A ).
  • Sau đó dựa vào định nghĩa về phép tịnh tiến ta suy ra M là ảnh của A qua phép tịnh tiến theo véc tơ cố định.
  • Dựa vào tính chất thay đổi của A ta suy ra giới hạn quỹ tích .

II. Ví dụ minh họa Ví dụ 1: Cho hai điểm B,C cố định nằm trên (O,R) và một điểm A thay đổi trên đường tròn đó . Chứng minh rằng trực tâm của tam giác ABC nằm trên một đường tròn cố định .

Giải​

- Kẻ đường kính BB’ .Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định \( \Rightarrow \overrightarrow {AH} = \overrightarrow {B'C} \). Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H . Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo \(\overrightarrow v = \overrightarrow {B'C} \) - Cách xác định đường tròn (O’;R) . Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : \(\overrightarrow {{\rm{OO}}'} = \overrightarrow {B'C} \). Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

Ví dụ 2. Cho hình bình hành ABCD có hai đỉnh A,B cố định , còn đỉnh C chạy trên một đường tròn (O;R). Tìm quỹ tích đỉnh D khi C thay đổi .

Giải​

- Theo tính chất hình bình hành : BA=DC \( \Rightarrow \overrightarrow {AB} = \overrightarrow {CD} \). Nhưng theo giả thiết A,B cố định , cho nên \(\overrightarrow {AB} \) cố định . Ví C chạy trên (O;R) , D là ảnh của C qua phép tịnh tiến theo \(\overrightarrow {AB} \) , cho nên D chạy trên đường tròn O’ là ảnh của đường tròn O - Cách xác định (O’) : Từ O kẻ đường thẳng // với AB , sau đó dựng véc tơ \(\overrightarrow {{\rm{OO}}'} = \overrightarrow {AB} \). Từ O’ quay đường tròn bán kính R , đó chính là đường tròn quỹ tích của D.

Ví dụ 3. Cho hai đường tròn (O;R) và (O’;R’) cùng với hai điẻm A,B . Tìm điểm M trên (O;R) và điểm M’ trên (O’R’) sao cho \(\overrightarrow {MM'} = \overrightarrow {AB} \).

Giải​

  1. Giả sử ta lấy điểm M trên (O;R). Theo giả thiết , thì M’ là ảnh của M qua phép tịnh tiến theo véc tơ \(\overrightarrow {AB} \). Nhưng do M chạy trên (O;R) cho nên M’ chạy trên đường tròn ảnh của (O;R) qua phép tịnh tiến . Mặt khác M’ chạy trên (O’;R’) vì thế M’ là giao của đường tròn ảnh với đường tròn (O’;R’).

    b/ Tương tự : Nếu lấy M’ thuộc đường tròn (O’;R’) thì ta tìm được N trên (O;R) là giao của (O;R) với đường tròn ảnh của (O’;R’) qua phép tịnh tiến theo véc tơ AB c/ Số nghiệm hình bằng số các giao điểm của hai đường tròn ảnh với hai đường tròn đã cho .

    Ví dụ 4. Cho đường tròn (O) đường kính AB cố định . Một đường kính MN thay đổi . Các đường thẳng AM và AN cắt các tiếp tuyến tại B lần lượt là P,Q . Tìm quỹ tích trực tâm các tam giác MPQ và NPQ ?

Giải​

- Tam giác MPQ có QA là một đường cao , vì vậy nếu ta kẻ MM’ vuông góc với PQ thì MM’ cắt QA tại trực tâm H . OA là đường trung bình của tam giác MNH suy ra : \(\overrightarrow {MH} = 2\overrightarrow {OA} = \overrightarrow {BA} \). Vậy phép tịnh tiến theo \(\overrightarrow {BA} \) biến điểm M thành điểm H . Nhưng M chạy trên (O;AB) cho nên H chạy trên đường tròn ảnh của (O;AB) qua phép tịnh tiến \(\overrightarrow {BA} \). - Tương tự đối với tam giác NPQ . - Giới hạn quỹ tích . Do M không trùng với A,B cho nên trên đường tròn ảnh bỏ đi hai điểm ảnh của A,B .

Chủ đề