Hướng dẫn sử dụng hx711

Mạch chuyển đổi ADC 24bit Loadcell HX711 được sử dụng để đọc giá trị điện trở thay đổi từ cảm biến Loadcell (thường rất nhỏ không thể đọc trực tiếp bằng VĐK) với độ phân giải ADC 24bit và chuyển sang giao tiếp 2 dây (Clock và Data) để gửi dữ liệu về Vi điều khiển, thích hợp để sử dụng với Loadcell trong các ứng dụng đo cân nặng.

Thông số kỹ thuật :

  • Điện áp hoạt động : 2.7~5VDC
  • Dòng tiêu thụ : < 1.5 mA
  • Tốc độ lấy mẫu : 10 - 80 SPS ( tùy chỉnh )
  • Độ phân giải : 24 bit ADC
  • Độ phân giải điện áp : 40mV
  • Kích thước : 38 x 21 x 10 mm

Hướng dẫn sử dụng (tham khảo ) của Spakfun

Sơ đồ kết nối:

Hướng dẫn sử dụng hx711

Hướng dẫn sử dụng hx711

Thông tin sản phẩm được Hshop.vn tự xây dựng, nếu sử dụng xin vui lòng ghi rõ nguồn, xin cảm ơn!

Hướng dẫn sử dụng hx711
Hướng dẫn sử dụng hx711
Hướng dẫn sử dụng hx711
Hướng dẫn sử dụng hx711

Loadcell giao tiếp Arduino là dùng Cảm biến Loadcell là thiết bị cảm biến dùng để chuyển đổi lực hoặc trọng lượng thành tín hiệu điện. Khái niệm“strain gage”: cấu trúc có thể biến dạng đàn hồi khi chịu tác động của lực tạo ra một tín hiệu điện tỷ lệ với sự biến dạng này. Mỗi cảm biến Loadcell(cảm biến tải) một đầu ra độc lập, thường 1 đến 3 mV/V. Đầu ra kết hợp được tổng hợp dựa trên kết quả của đầu ra từng cảm biến tải – load cell. Các thiết bị đo lường hoặc bộ hiển thị khuyếch đại tín hiệu điện đưa về, qua chuyển đổi ADC, vi xử lý với phần mềm tích hợp sẵn thực hiện tính toán chỉnh định và đưa kết quả đọc được lên màn hình. Đa phần các thiết bị hay bộ hiển thị hiện đại đều cho phép giao tiếp với các thiết bị ngoài khác như máy tính hoặc máy in. Những load cell này dựa trên nguyên lý cầu điện trở cân bằng {Wheatstone} gọi là cảm biến tải cầu điện trở. Cảm biến Loadcell 1Kg, 5Kg, 10Kg, 20Kg sử dụng để đo khối lượng của vật thể tối đa, cảm biến bằng kim loại với thiết kế rất dễ lắp đặt, phù hợp với các ứng dụng cân điện tử, cảm biến khối lượng,…, lưu ý để sử dụng với Vi điều khiển cần mua thêm Mạch chuyển đổi ADC HX711 chuyên dụng dành cho Loadcell.

Liên hệ làm Đồ án và Mạch điện tử Phone : 0967.551.477 Zalo : 0967.551.477 FB : Huỳnh Nhật Tùng Email : [email protected] Địa Chỉ: 171/25 Lê Văn Thọ, P8, Gò Vấp, Tp HCM Chi tiết: Nhận làm mạch và đồ án Điện tử

Table of Contents

1. Linh kiện cần thiết làm mạch đọc cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711

1.1 Vi điều khiển Arduino trong mạch đọc cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711

a. Giới thiệu

Arduino Uno R3 (Dip) có 14 chân digital dùng để đọc hoặc xuất tín hiệu. Chúng chỉ có 2 mức điện áp là 0V và 5V với dòng vào/ra tối đa trên mỗi chân là 40mA. Ở mỗi chân đều có các điện trở pull-up từ được cài đặt ngay trong vi điều khiển ATmega328 (mặc định thì các điện trở này không được kết nối).

Các chức năng khác

Arduino Uno R3 là một bảng mạch vi điều khiển nguồn mở dựa trên vi điều khiển Microchip ATmega328 được phát triển bởi Arduino.cc. Bảng mạch được trang bị các bộ chân đầu vào/ đầu ra Digital và Analog có thể giao tiếp với các bảng mạch mở rộng khác nhau. Mạch Arduino Uno thích hợp cho những bạn mới tiếp cận và đam mê về điện tử, lập trình…Dựa trên nền tảng mở do Arduino.cc cung cấp các bạn dễ dàng xây dựng cho mình một dự án nhanh nhất ( lập trình Robot, xe tự hành, điều khiển bật tắt led…).

Hướng dẫn sử dụng hx711
Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, …
Hướng dẫn sử dụng hx711

b. Chức năng của Arduino R3:

  • 2 chân Serial: 0 (RX) và 1 (TX): dùng để gửi (transmit – TX) và nhận (receive – RX) dữ liệu TTL Serial. Arduino Uno có thể giao tiếp với thiết bị khác thông qua 2 chân này. Kết nối bluetooth thường thấy nói nôm na chính là kết nối Serial không dây. Nếu không cần giao tiếp Serial, bạn không nên sử dụng 2 chân này nếu không cần thiết
  • Chân PWM (~): 3, 5, 6, 9, 10, và 11: cho phép bạn xuất ra xung PWM với độ phân giải 8bit (giá trị từ 0 → 28-1 tương ứng với 0V → 5V) bằng hàm analogWrite(). Nói một cách đơn giản, bạn có thể điều chỉnh được điện áp ra ở chân này từ mức 0V đến 5V thay vì chỉ cố định ở mức 0V và 5V như những chân khác.

Các chức năng khác

  • Chân giao tiếp SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Ngoài các chức năng thông thường, 4 chân này còn dùng để truyền phát dữ liệu bằng giao thức SPI với các thiết bị khác.
  • LED 13: trên Arduino UNO có 1 đèn led màu cam (kí hiệu chữ L). Khi bấm nút Reset, bạn sẽ thấy đèn này nhấp nháy để báo hiệu. Nó được nối với chân số 13. Khi chân này được người dùng sử dụng, LED sẽ sáng.
  • Arduino Uno R3 có 6 chân analog (A0 → A5) cung cấp độ phân giải tín hiệu 10bit (0 → 210-1) để đọc giá trị điện áp trong khoảng 0V → 5V. Với chân AREF trên board, bạn có thể để đưa vào điện áp tham chiếu khi sử dụng các chân analog. Tức là nếu bạn cấp điện áp 2.5V vào chân này thì bạn có thể dùng các chân analog để đo điện áp trong khoảng từ 0V → 2.5V với độ phân giải vẫn là 10bit. Đặc biệt, Arduino UNO có 2 chân A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

Hướng dẫn sử dụng hx711

c.Thông số kỹ thuật Arduino Uno R3 (Dip)

DatasheetsAtmega328Standard Package27CategoryIntegrated Circuits (ICs)FamilyEmbedded – AtmelSeriesAtmegaPackagingTubeCore ProcessorAVRCore Size8-BitSpeed16MHzConnectivityI²C, SPI, UART / USART, USBPeripheralsBrown-out Detec t/ Reset, HLVD, POR, PWM, WDTNumber of I /O14Program Memory Size32KBProgram Memory TypeFLASHEEPROM Size1KBRAM Size2KVoltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 VData ConvertersA/D 6 x 10bitOscillator TypeInternalOperating Temperature-40°C ~ 85°CPackage / Case28-SOIC (0.295″, 7.50mm Width)Other NamesAtmega328

d. Power

  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • VIN: Chân này dùng để cấp nguồn ngoài (điện áp cấp từ 7-12VDC).
  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • 3V3: Điện áp ra 3.3V (dòng điện trên mỗi chân này tối đa là 50mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên Arduino UNO và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.

e.Bộ nhớ

Vi điều khiển ATmega328:

  • 32 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
  • 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
  • 1 KB cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.

f. Các chân đầu vào và đầu ra

Trên Board Arduino Uno có 14 chân Digital được sử dụng để làm chân đầu vào và đầu ra và chúng sử dụng các hàm pinMode(), digitalWrite(), digitalRead(). Giá trị điện áp trên mỗi chân là 5V, dòng trên mỗi chân là 20mA và bên trong có điện trở kéo lên là 20-50 ohm. Dòng tối đa trên mỗi chân I/O không vượt quá 40mA để tránh trường hợp gây hỏng board mạch. Ngoài ra, một số chân Digital có chức năng đặt biệt:

  • Serial: 0 (RX) và 1 (TX): Được sử dụng để nhận dữ liệu (RX) và truyền dữ liệu (TX) TTL.
  • Ngắt ngoài: Chân 2 và 3.
  • PWM: 3, 5, 6, 9 và 11 Cung cấp đầu ra xung PWM với độ phân giải 8 bit bằng hàm analogWrite ().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Các chân này hỗ trợ giao tiếp SPI bằng thư viện SPI.
  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • TWI/I2C: A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

1.2 Cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711

a. Giới thiệu

  • Cảm biến Load cell là thiết bị cảm biến dùng để chuyển đổi lực hoặc trọng lượng thành tín hiệu điện. Khái niệm“strain gage”: cấu trúc có thể biến dạng đàn hồi khi chịu tác động của lực tạo ra một tín hiệu điện tỷ lệ với sự biến dạng này.
  • Mỗi cảm biến Load cell(cảm biến tải) một đầu ra độc lập, thường 1 đến 3 mV/V. Đầu ra kết hợp được tổng hợp dựa trên kết quả của đầu ra từng cảm biến tải – load cell. Các thiết bị đo lường hoặc bộ hiển thị khuyếch đại tín hiệu điện đưa về, qua chuyển đổi ADC, vi xử lý với phần mềm tích hợp sẵn thực hiện tính toán chỉnh định và đưa kết quả đọc được lên màn hình. Đa phần các thiết bị hay bộ hiển thị hiện đại đều cho phép giao tiếp với các thiết bị ngoài khác như máy tính hoặc máy in. Những load cell này dựa trên nguyên lý cầu điện trở cân bằng {Wheatstone} gọi là cảm biến tải cầu điện trở.
  • Cảm biến Loadcell 1Kg, 5Kg, 10Kg, 20Kg sử dụng để đo khối lượng của vật thể tối đa, cảm biến bằng kim loại với thiết kế rất dễ lắp đặt, phù hợp với các ứng dụng cân điện tử, cảm biến khối lượng,…, lưu ý để sử dụng với Vi điều khiển cần mua thêm Mạch chuyển đổi ADC HX711 chuyên dụng dành cho Loadcell.

Hướng dẫn sử dụng hx711

b. Thông số kỹ thuật khối lượng Loadcell

  • Model : YZC – 133
  • Tải trọng : 1Kg, 5Kg, 10Kg, 20Kg
  • Rated Output ( mV/V) : 1.0 +- 0.15
  • Độ lệch tuyến tính (%) : 0.05
  • Creep (5min) % : 0.1
  • Ảnh hưởng nhiệt độ tới độ nhạy %RO/ độ C : 0.003
  • Ảnh hưởng nhiệt độ tới điểm không %RO/ độ C : 0.02
  • Độ cân bằng điểm không %RO : +-0.1
  • Trở kháng đầu vào (Ω ) : 1066 +- 20
  • Trở kháng ngõ ra (Ω ) : 1000 +- 20
  • Trở kháng cách li (MΩ) 50V : 2000
  • Điện áp hoạt động : 5V
  • Nhiệt độ hoạt động : -20 ~ 65 độ C
  • Safe Overload %RO : 120
  • Ultimate overload %RO :150
  • Chất liệu cảm biến : Nhôm
  • Độ dài dây : 180mm

c. Chức năng các dây khối lượng Loadcell

  • Dây đỏ : Ngõ vào ( + )
  • Dây đen : Ngõ vào ( – )
  • Dây xanh Lá : Ngõ ra ( + )
  • Dây trắng : Ngõ ra ( – )

d. Cấu tạo cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711

Loadcell được cấu tạo bởi hai thành phần là: Strain gage và Load. Một loadcell thường bao gồm các strain gage được dán vào bề mặt của thân loadcell. Thân loadcell là một khối kim loại đàn hồi và tùy theo từng loại loadcell và mục đích sử dụng loadcell, thân loadcell được thiết kế nhiều hình dạng khác nhau, chế tạo bằng nhiều vật liệu khác nhau (nhôm hợp kim, thép không gỉ…)

  • Strain gage là một điện trở đặc biệt, có điện trở thay đổi khi bị nén hay kéo dãn và được nuôi bằng một nguồn ổn định.
  • Load là một thanh kim loại có tính đàn hồi.

R = Điện trở strain gauge (Ohm) L = Chiều dài của sợi kim loại strain gauge (m) A = Tiết diện của sợi kim loại strain gauge (m2) r= Điện trở suất vật liệu của sợi kim loại strain gauge Khi dây kim loại bị lực tác động sẽ thay đổi điện trở Khi dây bị lực nén, chiều dài strain gauge giảm, điện trở sẽ giảm xuống. Khi dây bi kéo dãn, chiều dài strain gauge tăng, điện trở sẽ tăng lên Điện trở thay đổi tỷ lệ với lực tác động.

e. Nguyên lý hoạt động cảm biến khối lượng Loadcell

Tại trạng thái cân bằng (trạng thái không tải), điện áp tín hiệu ra là số không hoặc gần bằng không khi bốn điện trở được gắn phù hợp về giá trị. Khi có tải trọng hoặc lực tác động lên thân loadcell làm cho thân loadcell bị biến dạng (giãn hoặc nén), dẫn đến sự thay đổi về chiều dài và tiết diện của các sợi kim loại của điện trở strain gage -> thay đổi giá trị điện trở -> thay đổi điện áp đầu ra.

f. Ứng dụng của cảm biến khối lượng Loadcell

  • Làm cân điện tử
  • Làm phân loại sản phẩm theo cân nặng sử dụng cho hệ thống cân tĩnh hoặc cân động
  • Ứng dụng đo độ an toàn trong cầu đường
  • Hệ thống chiếc rót nước vào chai

1.3 Module chuyển đổi ADC 24bit loadcell HX-711 khối lượng Loadcell giao tiếp Arduino

a. Giới thiệu

  • Mạch chuyển đổi ADC 24bit Loadcell HX711 được sử dụng để đọc giá trị điện trở thay đổi từ cảm biến Loadcell (thường rất nhỏ không thể đọc trực tiếp bằng VĐK) với độ phân giải ADC 24bit và chuyển sang giao tiếp 2 dây (Clock và Data) để gửi dữ liệu về Vi điều khiển, thích hợp để sử dụng với Loadcell trong các ứng dụng đo cân nặng.

Hướng dẫn sử dụng hx711

b. Thông số kỹ thuật

  • Điện áp hoạt động : 2.7~5VDC
  • Dòng tiêu thụ : < 1.5 mA
  • Tốc độ lấy mẫu : 10 – 80 SPS ( tùy chỉnh )
  • Độ phân giải : 24 bit ADC
  • Độ phân giải điện áp : 40mV
  • Kích thước : 38 x 21 x 10 mm

1.4 LCD 16×2 cho mạch đọc khối lượng Loadcell giao tiếp Arduino qua hx711

a. Giới thiệu

Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.

Hướng dẫn sử dụng hx711

b. Thông số kỹ thuật

  • Điện áp hoạt động là 5 V.
  • Kích thước: 80 x 36 x 12.5 mm
  • Chữ đen, nền xanh lá
  • Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
  • Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
  • Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
  • Có thể được điều khiển với 6 dây tín hiệu
  • Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.

c. Sơ đồ chân LCD 16×2

Số chânKý hiệu chânMô tả chân1VssCấp điện 0v2VccCấp điện 5v3V0Chỉnh độ tương phản4RSLựa chọn thanh ghi địa chỉ hay dữ liệu5RWLựa chọn thanh ghi Đọc hay Viết6ENCho phép xuất dữ liệu7D0Đường truyền dữ liệu 08D1Đường truyền dữ liệu 19D2Đường truyền dữ liệu 210D3Đường truyền dữ liệu 311D4Đường truyền dữ liệu 412D5Đường truyền dữ liệu 513D6Đường truyền dữ liệu 614D7Đường truyền dữ liệu 715AChân dương đèn màn hình16KChân âm đèn màn hình Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:

  • Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
  • Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
  • Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.

d. Địa chỉ ba vùng nhớ

  • Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
  • Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
  • Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
  • Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.

e. Các lệnh điều khiển của LCD

Hướng dẫn sử dụng hx711

  • Lệnh thiết lập chức năng giao tiếp “Function set”:
    • Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
    • Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
    • Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
    • Các bit cao còn lại là hằng số không đổi.
  • Lệnh xoá màn hình “Clear Display”: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.

  • Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home”: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
  • Lệnh thiết lập lối vào “Entry mode set”: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
    • Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
    • Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
  • Lệnh điều khiển con trỏ hiển thị “Display Control”:

    • Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
    • Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
    • Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
    • Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
  • Lệnh di chuyển con trỏ “Cursor /Display Shift”: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển
    • Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
    • Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
    • Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
  • Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.

f. Bảng mã ASCII sử dụng cho LCD

Hướng dẫn sử dụng hx711

g. Bảng địa chỉ cho LCD

Hướng dẫn sử dụng hx711

2. Hướng dẫn đồ án cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711 hiển thị LCD1602

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

Hướng dẫn sử dụng hx711

Phần mềm

Thư viện HX711.h tải từ phần mềm Arduino

include

include "HX711.h"

// HX711.DOUT – pin

A1

// HX711.PD_SCK – pin

A0

LiquidCrystal lcd(12, 11, 5, 4, 3, 2); HX711 scale(A1, A0); // parameter “gain” is ommited; the default value 128 is used by the library void setup() { Serial.begin(38400); lcd.begin(16, 2); lcd.print(“weight Measurement”); delay(1000); lcd.clear(); lcd.print(“setting up”); Serial.println(“Weight Measurement”); Serial.println(“Before setting up the scale:”); Serial.print(“read: \t\t”); Serial.println(scale.read()); // print a raw reading from the ADC Serial.print(“read average: \t\t”); Serial.println(scale.read_average(20)); // print the average of 20 readings from the ADC Serial.print(“get value: \t\t”); Serial.println(scale.get_value(5)); // print the average of 5 readings from the ADC minus the tare weight (not set yet) Serial.print(“get units: \t\t”); Serial.println(scale.get_units(5), 1); // print the average of 5 readings from the ADC minus tare weight (not set) divided // by the SCALE parameter (not set yet) scale.set_scale(2280.f); // this value is obtained by calibrating the scale with known weights; see the README for details scale.tare(); // reset the scale to 0 Serial.println(“After setting up the scale:”); Serial.print(“read: \t\t”); Serial.println(scale.read()); // print a raw reading from the ADC Serial.print(“read average: \t\t”); Serial.println(scale.read_average(20)); // print the average of 20 readings from the ADC Serial.print(“get value: \t\t”); Serial.println(scale.get_value(5)); // print the average of 5 readings from the ADC minus the tare weight, set with tare() Serial.print(“get units: \t\t”); Serial.println(scale.get_units(5), 1); // print the average of 5 readings from the ADC minus tare weight, divided // by the SCALE parameter set with set_scale Serial.println(“Readings:”); } void loop() { Serial.print(“one reading:\t”); Serial.print(scale.get_units(), 1); Serial.print(“\t| average:\t”); Serial.println(scale.get_units(10), 1); lcd.clear(); lcd.setCursor(1,1); lcd.print(scale.get_units(10), 1); scale.power_down(); // put the ADC in sleep mode delay(5000); scale.power_up(); }

3. Hoạt động của mạch đọc cảm biến khối lượng Loadcell giao tiếp Arduino qua hx711

Khi cấp điện hệ thống hoạt động, vi điều khiển hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến loadcell trả về tín hiệu cho module chuyển đổi 24bit HX711 sau đó chuyển vào vi điều khiển, Khi nhận tín hiệu vi điều khiển tính toán, xử lý dữ liệu và xuất tín hiệu ra màn hình LCD1602 hiển thị thông tin có người hoặc không có người theo yêu cầu của người lập trình.