Dcshelper là gì

1. Amon L., Lehmann C.H.K., Baranska A., Schoen J., Heger L., Dudziak D. Transcriptional control of dendritic cell development and functions. Int. Rev. Cell Mol. Boil. 2019;349:55–151. doi: 10.1016/bs.ircmb.2019.10.001. [PubMed] [CrossRef] [Google Scholar]

2. Heidkamp G.F., Lehmann C.H.K., Heger L., Baransk A., Hoffmann A., Lühr J., Dudziak D. Functional Specialization of Dendritic Cell Subsets. In: Bradshaw R.A., Stahl P.D., editors. Encyclopedia of Cell Biology. Academic Press; Waltham, MA, USA: 2016. pp. 588–604. [CrossRef] [Google Scholar]

3. Steinman R.M., Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–426. doi: 10.1038/nature06175. [PubMed] [CrossRef] [Google Scholar]

4. Kaplan D.H. Ontogeny and function of murine epidermal Langerhans cells. Nat. Immunol. 2017;18:1068–1075. doi: 10.1038/ni.3815. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Flacher V., Tripp C.H., Mairhofer D.G., Steinman R.M., Stoitzner P., Idoyaga J., Romani N. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol. Med. 2014;6:1638. doi: 10.15252/emmm.201404707. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Igyarto B.Z., Haley K., Ortner D., Bobr A., Gerami-Nejad M., Edelson B.T., Zurawski S.M., Malissen B., Zurawski G., Berman J., et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. 2011;35:260–272. doi: 10.1016/j.immuni.2011.06.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Levin C., Bonduelle O., Nuttens C., Primard C., Verrier B., Boissonnas A., Combadiere B. Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization. J. Investing. Dermatol. 2017;137:1905–1913. doi: 10.1016/j.jid.2017.04.016. [PubMed] [CrossRef] [Google Scholar]

8. Mathers A.R., Janelsins B.M., Rubin J.P., Tkacheva O.A., Shufesky W.J., Watkins S.C., Morelli A.E., Larregina A.T. Differential capability of human cutaneous dendritic cell subsets to initiate Th27 responses. J. Immunol. (Baltim. Md. 1950) 2009;182:921–933. doi: 10.4049/jimmunol.182.2.921. [PubMed] [CrossRef] [Google Scholar]

9. Stoitzner P., Tripp C.H., Eberhart A., Price K.M., Jung J.Y., Bursch L., Ronchese F., Romani N. Langerhans cells cross-present antigen derived from skin. Proc. Natl. Acad. Sci. USA. 2006;103:7783–7788. doi: 10.1073/pnas.0509307103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Malissen B., Tamoutounour S., Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014;14:417–428. [PubMed] [Google Scholar]

11. Segura E., Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 2013;34:440–445. doi: 10.1016/j.it.2013.06.001. [PubMed] [CrossRef] [Google Scholar]

12. Hammad H., Plantinga M., Deswarte K., Pouliot P., Willart M.A.M., Kool M., Muskens F., Lambrecht B.N. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 2010;207:2097–2111. doi: 10.1084/jem.20101563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Hohl T.M., Rivera A., Lipuma L., Gallegos A., Shi C., Mack M., Pamer E.G. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 2009;6:470–481. doi: 10.1016/j.chom.2009.10.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Leon B., Lopez-Bravo M., Ardavin C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity. 2007;26:519–531. doi: 10.1016/j.immuni.2007.01.017. [PubMed] [CrossRef] [Google Scholar]

15. Segura E., Albiston A.L., Wicks I.P., Chai S.Y., Villadangos J.A. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. Proc. Natl. Acad. Sci. USA. 2009;106:20377–20381. doi: 10.1073/pnas.0910295106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Wakim L.M., Waithman J., van Rooijen N., Heath W.R., Carbone F.R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science (N. Y.) 2008;319:198–202. doi: 10.1126/science.1151869. [PubMed] [CrossRef] [Google Scholar]

17. Bender A., Sapp M., Schuler G., Steinman R.M., Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods. 1996;196:121–135. doi: 10.1016/0022-1759(96)00079-8. [PubMed] [CrossRef] [Google Scholar]

18. Lutz M.B., Kukutsch N., Ogilvie A.L., Rossner S., Koch F., Romani N., Schuler G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods. 1999;223:77–92. doi: 10.1016/S0022-1759(98)00204-X. [PubMed] [CrossRef] [Google Scholar]

19. Helft J., Bottcher J., Chakravarty P., Zelenay S., Huotari J., Schraml B.U., Goubau D., Reis e Sousa C. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells. Immunity. 2015;42:1197–1211. doi: 10.1016/j.immuni.2015.05.018. [PubMed] [CrossRef] [Google Scholar]

20. Guilliams M., Malissen B. A Death Notice for In-Vitro-Generated GM-CSF Dendritic Cells? Immunity. 2015;42:988–990. doi: 10.1016/j.immuni.2015.05.020. [PubMed] [CrossRef] [Google Scholar]

21. Amon L., Lehmann C.H.K., Heger L., Heidkamp G.F., Dudziak D. The ontogenetic path of human dendritic cells. Mol. Immunol. 2020;120:122–129. doi: 10.1016/j.molimm.2020.02.010. [PubMed] [CrossRef] [Google Scholar]

22. Guilliams M., Ginhoux F., Jakubzick C., Naik S.H., Onai N., Schraml B.U., Segura E., Tussiwand R., Yona S. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014;14:571–578. doi: 10.1038/nri3712. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Merad M., Ginhoux F., Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 2008;8:935–947. doi: 10.1038/nri2455. [PubMed] [CrossRef] [Google Scholar]

24. Merad M., Sathe P., Helft J., Miller J., Mortha A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013;31:563–604. doi: 10.1146/annurev-immunol-020711-074950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Murphy T.L., Grajales-Reyes G.E., Wu X., Tussiwand R., Briseno C.G., Iwata A., Kretzer N.M., Durai V., Murphy K.M. Transcriptional Control of Dendritic Cell Development. Annu. Rev. Immunol. 2016;34:93–119. doi: 10.1146/annurev-immunol-032713-120204. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Eisenbarth S.C. Dendritic cell subsets in T cell programming: Location dictates function. Nat. Rev. Immunol. 2019;19:89–103. doi: 10.1038/s41577-018-0088-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Worbs T., Hammerschmidt S.I., Forster R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 2017;17:30–48. doi: 10.1038/nri.2016.116. [PubMed] [CrossRef] [Google Scholar]

28. Alcantara-Hernandez M., Leylek R., Wagar L.E., Engleman E.G., Keler T., Marinkovich M.P., Davis M.M., Nolan G.P., Idoyaga J. High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity. 2017;47:1037–1050.e1036. doi: 10.1016/j.immuni.2017.11.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Granot T., Senda T., Carpenter D.J., Matsuoka N., Weiner J., Gordon C.L., Miron M., Kumar B.V., Griesemer A., Ho S.H., et al. Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity. 2017;46:504–515. doi: 10.1016/j.immuni.2017.02.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Guilliams M., Dutertre C.A., Scott C.L., McGovern N., Sichien D., Chakarov S., Van Gassen S., Chen J., Poidinger M., De Prijck S., et al. Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity. 2016;45:669–684. doi: 10.1016/j.immuni.2016.08.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Heidkamp G.F., Sander J., Lehmann C.H.K., Heger L., Eissing N., Baranska A., Luhr J.J., Hoffmann A., Reimer K.C., Lux A., et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci. Immunol. 2016;1:eaai7677. doi: 10.1126/sciimmunol.aai7677. [PubMed] [CrossRef] [Google Scholar]

32. See P., Dutertre C.A., Chen J., Gunther P., McGovern N., Irac S.E., Gunawan M., Beyer M., Handler K., Duan K., et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science (N. Y.) 2017;356 doi: 10.1126/science.aag3009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Villani A.C., Satija R., Reynolds G., Sarkizova S., Shekhar K., Fletcher J., Griesbeck M., Butler A., Zheng S., Lazo S., et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science (N. Y.) 2017;356 doi: 10.1126/science.aah4573. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Dzionek A., Fuchs A., Schmidt P., Cremer S., Zysk M., Miltenyi S., Buck D.W., Schmitz J. BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. (Baltim. Md. 1950) 2000;165:6037–6046. doi: 10.4049/jimmunol.165.11.6037. [PubMed] [CrossRef] [Google Scholar]

35. Edelson B.T., Kc W., Juang R., Kohyama M., Benoit L.A., Klekotka P.A., Moon C., Albring J.C., Ise W., Michael D.G., et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J. Exp. Med. 2010;207:823–836. doi: 10.1084/jem.20091627. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Everts B., Tussiwand R., Dreesen L., Fairfax K.C., Huang S.C., Smith A.M., O’Neill C.M., Lam W.Y., Edelson B.T., Urban J.F., Jr., et al. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 2016;213:35–51. doi: 10.1084/jem.20150235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Ginhoux F., Collin M.P., Bogunovic M., Abel M., Leboeuf M., Helft J., Ochando J., Kissenpfennig A., Malissen B., Grisotto M., et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 2007;204:3133–3146. doi: 10.1084/jem.20071733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Henri S., Poulin L.F., Tamoutounour S., Ardouin L., Guilliams M., de Bovis B., Devilard E., Viret C., Azukizawa H., Kissenpfennig A., et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 2010;207:189–206. doi: 10.1084/jem.20091964. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Hildner K., Edelson B.T., Purtha W.E., Diamond M., Matsushita H., Kohyama M., Calderon B., Schraml B.U., Unanue E.R., Diamond M.S., et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science (N. Y.) 2008;322:1097–1100. doi: 10.1126/science.1164206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Jones A., Bourque J., Kuehm L., Opejin A., Teague R.M., Gross C., Hawiger D. Immunomodulatory Functions of BTLA and HVEM Govern Induction of Extrathymic Regulatory T Cells and Tolerance by Dendritic Cells. Immunity. 2016;45:1066–1077. doi: 10.1016/j.immuni.2016.10.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Sancho D., Joffre O.P., Keller A.M., Rogers N.C., Martinez D., Hernanz-Falcon P., Rosewell I., Reis e Sousa C. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458:899–903. doi: 10.1038/nature07750. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Watchmaker P.B., Lahl K., Lee M., Baumjohann D., Morton J., Kim S.J., Zeng R., Dent A., Ansel K.M., Diamond B., et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat. Immunol. 2014;15:98–108. doi: 10.1038/ni.2768. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Becker M., Guttler S., Bachem A., Hartung E., Mora A., Jakel A., Hutloff A., Henn V., Mages H.W., Gurka S., et al. Ontogenic, Phenotypic, and Functional Characterization of XCR1(+) Dendritic Cells Leads to a Consistent Classification of Intestinal Dendritic Cells Based on the Expression of XCR1 and SIRPalpha. Front. Immunol. 2014;5:326. doi: 10.3389/fimmu.2014.00326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Flores-Langarica A., Cook C., Muller Luda K., Persson E.K., Marshall J.L., Beristain-Covarrubias N., Yam-Puc J.C., Dahlgren M., Persson J.J., Uematsu S., et al. Intestinal CD103(+)CD11b(+) cDC2 Conventional Dendritic Cells Are Required for Primary CD4(+) T and B Cell Responses to Soluble Flagellin. Front. Immunol. 2018;9:2409. doi: 10.3389/fimmu.2018.02409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Heger L., Balk S., Luhr J.J., Heidkamp G.F., Lehmann C.H.K., Hatscher L., Purbojo A., Hartmann A., Garcia-Martin F., Nishimura S.I., et al. CLEC10A Is a Specific Marker for Human CD1c(+) Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front. Immunol. 2018;9:744. doi: 10.3389/fimmu.2018.00744. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Miller J.C., Brown B.D., Shay T., Gautier E.L., Jojic V., Cohain A., Pandey G., Leboeuf M., Elpek K.G., Helft J., et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 2012;13:888–899. doi: 10.1038/ni.2370. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Bosteels C., Neyt K., Vanheerswynghels M., van Helden M.J., Sichien D., Debeuf N., De Prijck S., Bosteels V., Vandamme N., Martens L., et al. Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity. 2020;52:1039–1056.e1039. doi: 10.1016/j.immuni.2020.04.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Dzionek A., Sohma Y., Nagafune J., Cella M., Colonna M., Facchetti F., Gunther G., Johnston I., Lanzavecchia A., Nagasaka T., et al. BDCA-2, a novel plasmacytoid dendritic cell-specific type II C-type lectin, mediates antigen capture and is a potent inhibitor of interferon alpha/beta induction. J. Exp. Med. 2001;194:1823–1834. doi: 10.1084/jem.194.12.1823. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Rissoan M.C., Duhen T., Bridon J.M., Bendriss-Vermare N., Peronne C., de Saint Vis B., Briere F., Bates E.E. Subtractive hybridization reveals the expression of immunoglobulin-like transcript 7, Eph-B1, granzyme B, and 3 novel transcripts in human plasmacytoid dendritic cells. Blood. 2002;100:3295–3303. doi: 10.1182/blood-2002-02-0638. [PubMed] [CrossRef] [Google Scholar]

50. Schlitzer A., Sivakamasundari V., Chen J., Sumatoh H.R., Schreuder J., Lum J., Malleret B., Zhang S., Larbi A., Zolezzi F., et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 2015;16:718–728. doi: 10.1038/ni.3200. [PubMed] [CrossRef] [Google Scholar]

51. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019;50:37–50. doi: 10.1016/j.immuni.2018.12.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Schraml B.U., Reis e Sousa C. Defining dendritic cells. Curr. Opin. Immunol. 2015;32:13–20. doi: 10.1016/j.coi.2014.11.001. [PubMed] [CrossRef] [Google Scholar]

53. Den Haan J.M., Bevan M.J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8(+) and CD8(-) dendritic cells in vivo. J. Exp. Med. 2002;196:817–827. doi: 10.1084/jem.20020295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Den Haan J.M., Lehar S.M., Bevan M.J. CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 2000;192:1685–1696. doi: 10.1084/jem.192.12.1685. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Dudziak D., Kamphorst A.O., Heidkamp G.F., Buchholz V.R., Trumpfheller C., Yamazaki S., Cheong C., Liu K., Lee H.W., Park C.G., et al. Differential antigen processing by dendritic cell subsets in vivo. Science (N. Y.) 2007;315:107–111. doi: 10.1126/science.1136080. [PubMed] [CrossRef] [Google Scholar]

56. Lehmann C.H.K., Baranska A., Heidkamp G.F., Heger L., Neubert K., Luhr J.J., Hoffmann A., Reimer K.C., Bruckner C., Beck S., et al. DC subset-specific induction of T cell responses upon antigen uptake via Fcgamma receptors in vivo. J. Exp. Med. 2017;214:1509–1528. doi: 10.1084/jem.20160951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Idoyaga J., Lubkin A., Fiorese C., Lahoud M.H., Caminschi I., Huang Y., Rodriguez A., Clausen B.E., Park C.G., Trumpfheller C., et al. Comparable T helper 1 (Th2) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl. Acad. Sci. USA. 2011;108:2384–2389. doi: 10.1073/pnas.1019547108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Kano S., Sato K., Morishita Y., Vollstedt S., Kim S., Bishop K., Honda K., Kubo M., Taniguchi T. The contribution of transcription factor IRF1 to the interferon-gamma-interleukin 12 signaling axis and TH1 versus TH-17 differentiation of CD4+ T cells. Nat. Immunol. 2008;9:34–41. doi: 10.1038/ni1538. [PubMed] [CrossRef] [Google Scholar]

59. Maldonado-Lopez R., Maliszewski C., Urbain J., Moser M. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th2/Th2 cells in vivo. J. Immunol. (Baltim. Md. 1950) 2001;167:4345–4350. doi: 10.4049/jimmunol.167.8.4345. [PubMed] [CrossRef] [Google Scholar]

60. Wilson D.C., Matthews S., Yap G.S. IL-12 signaling drives CD8+ T cell IFN-gamma production and differentiation of KLRG1+ effector subpopulations during Toxoplasma gondii Infection. J. Immunol. (Baltim. Md. 1950) 2008;180:5935–5945. doi: 10.4049/jimmunol.180.9.5935. [PubMed] [CrossRef] [Google Scholar]

61. Bonifaz L., Bonnyay D., Mahnke K., Rivera M., Nussenzweig M.C., Steinman R.M. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 2002;196:1627–1638. doi: 10.1084/jem.20021598. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Hawiger D., Inaba K., Dorsett Y., Guo M., Mahnke K., Rivera M., Ravetch J.V., Steinman R.M., Nussenzweig M.C. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001;194:769–779. doi: 10.1084/jem.194.6.769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Yamazaki S., Dudziak D., Heidkamp G.F., Fiorese C., Bonito A.J., Inaba K., Nussenzweig M.C., Steinman R.M. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. (Baltim. Md. 1950) 2008;181:6923–6933. doi: 10.4049/jimmunol.181.10.6923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Gao Y., Nish S.A., Jiang R., Hou L., Licona-Limon P., Weinstein J.S., Zhao H., Medzhitov R. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39:722–732. doi: 10.1016/j.immuni.2013.08.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Kinnebrew M.A., Buffie C.G., Diehl G.E., Zenewicz L.A., Leiner I., Hohl T.M., Flavell R.A., Littman D.R., Pamer E.G. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity. 2012;36:276–287. doi: 10.1016/j.immuni.2011.12.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Lewis K.L., Caton M.L., Bogunovic M., Greter M., Grajkowska L.T., Ng D., Klinakis A., Charo I.F., Jung S., Gommerman J.L., et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity. 2011;35:780–791. doi: 10.1016/j.immuni.2011.08.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Mayer J.U., Demiri M., Agace W.W., MacDonald A.S., Svensson-Frej M., Milling S.W. Different populations of CD11b(+) dendritic cells drive Th2 responses in the small intestine and colon. Nat. Commun. 2017;8:15820. doi: 10.1038/ncomms15820. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Satpathy A.T., Briseno C.G., Lee J.S., Ng D., Manieri N.A., Kc W., Wu X., Thomas S.R., Lee W.L., Turkoz M., et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 2013;14:937–948. doi: 10.1038/ni.2679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Schlitzer A., McGovern N., Teo P., Zelante T., Atarashi K., Low D., Ho A.W., See P., Shin A., Wasan P.S., et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38:970–983. doi: 10.1016/j.immuni.2013.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Tussiwand R., Everts B., Grajales-Reyes G.E., Kretzer N.M., Iwata A., Bagaitkar J., Wu X., Wong R., Anderson D.A., Murphy T.L., et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity. 2015;42:916–928. doi: 10.1016/j.immuni.2015.04.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Williams J.W., Tjota M.Y., Clay B.S., Vander Lugt B., Bandukwala H.S., Hrusch C.L., Decker D.C., Blaine K.M., Fixsen B.R., Singh H., et al. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat. Commun. 2013;4:2990. doi: 10.1038/ncomms3990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Barr T.A., Brown S., Ryan G., Zhao J., Gray D. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells. Eur. J. Immunol. 2007;37:3040–3053. doi: 10.1002/eji.200636483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. [PubMed] [CrossRef] [Google Scholar]

74. Loschko J., Heink S., Hackl D., Dudziak D., Reindl W., Korn T., Krug A.B. Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity. J. Immunol. (Baltim. Md. 1950) 2011;187:6346–6356. doi: 10.4049/jimmunol.1102307. [PubMed] [CrossRef] [Google Scholar]

75. Mouries J., Moron G., Schlecht G., Escriou N., Dadaglio G., Leclerc C. Plasmacytoid dendritic cells efficiently cross-prime naive T cells in vivo after TLR activation. Blood. 2008;112:3713–3722. doi: 10.1182/blood-2008-03-146290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Tel J., Aarntzen E.H., Baba T., Schreibelt G., Schulte B.M., Benitez-Ribas D., Boerman O.C., Croockewit S., Oyen W.J., van Rossum M., et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73:1063–1075. doi: 10.1158/0008-5472.CAN-12-2583. [PubMed] [CrossRef] [Google Scholar]

77. Zhang H., Gregorio J.D., Iwahori T., Zhang X., Choi O., Tolentino L.L., Prestwood T., Carmi Y., Engleman E.G. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. Proc. Natl. Acad. Sci. USA. 2017;114:1988–1993. doi: 10.1073/pnas.1610630114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Flores M., Desai D.D., Downie M., Liang B., Reilly M.P., McKenzie S.E., Clynes R. Dominant expression of the inhibitory FcgammaRIIB prevents antigen presentation by murine plasmacytoid dendritic cells. J. Immunol. (Baltim. Md. 1950) 2009;183:7129–7139. doi: 10.4049/jimmunol.0901169. [PubMed] [CrossRef] [Google Scholar]

79. Sapoznikov A., Fischer J.A., Zaft T., Krauthgamer R., Dzionek A., Jung S. Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J. Exp. Med. 2007;204:1923–1933. doi: 10.1084/jem.20062373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Brown C.C., Gudjonson H., Pritykin Y., Deep D., Lavallee V.P., Mendoza A., Fromme R., Mazutis L., Ariyan C., Leslie C., et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell. 2019;179:846–863.e824. doi: 10.1016/j.cell.2019.09.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Swiecki M., Wang Y., Riboldi E., Kim A.H., Dzutsev A., Gilfillan S., Vermi W., Ruedl C., Trinchieri G., Colonna M. Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. J. Immunol. (Baltim. Md. 1950) 2014;192:4409–4416. doi: 10.4049/jimmunol.1303135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Leylek R., Alcantara-Hernandez M., Lanzar Z., Ludtke A., Perez O.A., Reizis B., Idoyaga J. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736–3750.e3738. doi: 10.1016/j.celrep.2019.11.042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Dress R.J., Dutertre C.A., Giladi A., Schlitzer A., Low I., Shadan N.B., Tay A., Lum J., Kairi M., Hwang Y.Y., et al. Plasmacytoid dendritic cells develop from Ly6D(+) lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 2019;20:852–864. doi: 10.1038/s41590-019-0420-3. [PubMed] [CrossRef] [Google Scholar]

84. Rodrigues P.F., Alberti-Servera L., Eremin A., Grajales-Reyes G.E., Ivanek R., Tussiwand R. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 2018;19:711–722. doi: 10.1038/s41590-018-0136-9. [PubMed] [CrossRef] [Google Scholar]

85. Alculumbre S.G., Saint-Andre V., Di Domizio J., Vargas P., Sirven P., Bost P., Maurin M., Maiuri P., Wery M., Roman M.S., et al. Diversification of human plasmacytoid predendritic cells in response to a single stimulus. Nat. Immunol. 2018;19:63–75. doi: 10.1038/s41590-017-0012-z. [PubMed] [CrossRef] [Google Scholar]

86. Segura E., Kapp E., Gupta N., Wong J., Lim J., Ji H., Heath W.R., Simpson R., Villadangos J.A. Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Mol. Immunol. 2010;47:1765–1773. doi: 10.1016/j.molimm.2010.02.028. [PubMed] [CrossRef] [Google Scholar]

87. Haniffa M., Shin A., Bigley V., McGovern N., Teo P., See P., Wasan P.S., Wang X.N., Malinarich F., Malleret B., et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37:60–73. doi: 10.1016/j.immuni.2012.04.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Luber C.A., Cox J., Lauterbach H., Fancke B., Selbach M., Tschopp J., Akira S., Wiegand M., Hochrein H., O’Keeffe M., et al. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity. 2010;32:279–289. doi: 10.1016/j.immuni.2010.01.013. [PubMed] [CrossRef] [Google Scholar]

89. Maier B., Leader A.M., Chen S.T., Tung N., Chang C., LeBerichel J., Chudnovskiy A., Maskey S., Walker L., Finnigan J.P., et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature. 2020;580:257–262. doi: 10.1038/s41586-020-2134-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Dutertre C.A., Becht E., Irac S.E., Khalilnezhad A., Narang V., Khalilnezhad S., Ng P.Y., van den Hoogen L.L., Leong J.Y., Lee B., et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity. 2019;51:573–589.e578. doi: 10.1016/j.immuni.2019.08.008. [PubMed] [CrossRef] [Google Scholar]

91. Yin X., Yu H., Jin X., Li J., Guo H., Shi Q., Yin Z., Xu Y., Wang X., Liu R., et al. Human Blood CD1c+ Dendritic Cells Encompass CD5high and CD5low Subsets That Differ Significantly in Phenotype, Gene Expression, and Functions. J. Immunol. (Baltim. Md. 1950) 2017;198:1553–1564. doi: 10.4049/jimmunol.1600193. [PubMed] [CrossRef] [Google Scholar]

92. Worah K., Mathan T.S.M., Vu Manh T.P., Keerthikumar S., Schreibelt G., Tel J., Duiveman-de Boer T., Skold A.E., van Spriel A.B., de Vries I.J.M., et al. Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function. Cell Rep. 2016;16:2953–2966. doi: 10.1016/j.celrep.2016.08.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Vremec D., Pooley J., Hochrein H., Wu L., Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. (Baltim. Md. 1950) 2000;164:2978–2986. doi: 10.4049/jimmunol.164.6.2978. [PubMed] [CrossRef] [Google Scholar]

94. Bigley V., McGovern N., Milne P., Dickinson R., Pagan S., Cookson S., Haniffa M., Collin M. Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J. Leukoc. Boil. 2015;97:627–634. doi: 10.1189/jlb.1HI0714-351R. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Yarovinsky F., Zhang D., Andersen J.F., Bannenberg G.L., Serhan C.N., Hayden M.S., Hieny S., Sutterwala F.S., Flavell R.A., Ghosh S., et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science (N. Y.) 2005;308:1626–1629. doi: 10.1126/science.1109893. [PubMed] [CrossRef] [Google Scholar]

96. Robbins S.H., Walzer T., Dembele D., Thibault C., Defays A., Bessou G., Xu H., Vivier E., Sellars M., Pierre P., et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008;9:R17. doi: 10.1186/gb-2008-9-1-r17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Schulz O., Diebold S.S., Chen M., Naslund T.I., Nolte M.A., Alexopoulou L., Azuma Y.T., Flavell R.A., Liljestrom P., Reis e Sousa C. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005;433:887–892. doi: 10.1038/nature03326. [PubMed] [CrossRef] [Google Scholar]

98. Edwards A.D., Diebold S.S., Slack E.M., Tomizawa H., Hemmi H., Kaisho T., Akira S., Reis e Sousa C. Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 2003;33:827–833. doi: 10.1002/eji.200323797. [PubMed] [CrossRef] [Google Scholar]

99. Lahoud M.H., Proietto A.I., Ahmet F., Kitsoulis S., Eidsmo L., Wu L., Sathe P., Pietersz S., Chang H.W., Walker I.D., et al. The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J. Immunol. (Baltim. Md. 1950) 2009;182:7587–7594. doi: 10.4049/jimmunol.0900464. [PubMed] [CrossRef] [Google Scholar]

100. Hutten T.J., Thordardottir S., Fredrix H., Janssen L., Woestenenk R., Tel J., Joosten B., Cambi A., Heemskerk M.H., Franssen G.M., et al. CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. J. Immunol. (Baltim. Md. 1950) 2016;197:2715–2725. doi: 10.4049/jimmunol.1600011. [PubMed] [CrossRef] [Google Scholar]

101. Flinsenberg T.W., Compeer E.B., Koning D., Klein M., Amelung F.J., van Baarle D., Boelens J.J., Boes M. Fcgamma receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells. Blood. 2012;120:5163–5172. doi: 10.1182/blood-2012-06-434498. [PubMed] [CrossRef] [Google Scholar]

102. Guilliams M., Bruhns P., Saeys Y., Hammad H., Lambrecht B.N. The function of Fcgamma receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014;14:94–108. doi: 10.1038/nri3582. [PubMed] [CrossRef] [Google Scholar]

103. Iberg C.A., Jones A., Hawiger D. Dendritic Cells As Inducers of Peripheral Tolerance. Trends Immunol. 2017;38:793–804. doi: 10.1016/j.it.2017.07.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Iwasaki A., Medzhitov R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015;16:343–353. doi: 10.1038/ni.3123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Jain A., Pasare C. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J. Immunol. (Baltim. Md. 1950) 2017;198:3791–3800. doi: 10.4049/jimmunol.1602000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Wculek S.K., Cueto F.J., Mujal A.M., Melero I., Krummel M.F., Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020;20:7–24. doi: 10.1038/s41577-019-0210-z. [PubMed] [CrossRef] [Google Scholar]

107. Broz P., Monack D.M. Newly described pattern recognition receptors team up against intracellular pathogens. Nat. Rev. Immunol. 2013;13:551–565. doi: 10.1038/nri3479. [PubMed] [CrossRef] [Google Scholar]

108. Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat. Rev. Immunol. 2016;16:35–50. doi: 10.1038/nri.2015.8. [PubMed] [CrossRef] [Google Scholar]

109. Lehmann C.H., Heger L., Heidkamp G.F., Baranska A., Luhr J.J., Hoffmann A., Dudziak D. Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines. 2016;4:8. doi: 10.3390/vaccines4020008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Vatner R.E., Janssen E.M. STING, DCs and the link between innate and adaptive tumor immunity. Mol. Immunol. 2019;110:13–23. doi: 10.1016/j.molimm.2017.12.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Brown G.D., Willment J.A., Whitehead L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018;18:374–389. doi: 10.1038/s41577-018-0004-8. [PubMed] [CrossRef] [Google Scholar]

113. Brubaker S.W., Bonham K.S., Zanoni I., Kagan J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015;33:257–290. doi: 10.1146/annurev-immunol-032414-112240. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Gay N.J., Symmons M.F., Gangloff M., Bryant C.E. Assembly and localization of Toll-like receptor signalling complexes. Nat. Rev. Immunol. 2014;14:546–558. doi: 10.1038/nri3713. [PubMed] [CrossRef] [Google Scholar]

115. O’Neill L.A., Golenbock D., Bowie A.G. The history of Toll-like receptors—redefining innate immunity. Nat. Rev. Immunol. 2013;13:453–460. doi: 10.1038/nri3446. [PubMed] [CrossRef] [Google Scholar]

116. Philpott D.J., Sorbara M.T., Robertson S.J., Croitoru K., Girardin S.E. NOD proteins: Regulators of inflammation in health and disease. Nat. Rev. Immunol. 2014;14:9–23. doi: 10.1038/nri3565. [PubMed] [CrossRef] [Google Scholar]

117. Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K., Robb N., Vreede F., Barclay W., Fodor E., et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140:397–408. doi: 10.1016/j.cell.2010.01.020. [PubMed] [CrossRef] [Google Scholar]

118. Swanson K.V., Deng M., Ting J.P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Leulier F., Lemaitre B. Toll-like receptors--taking an evolutionary approach. Nat. Rev. Genet. 2008;9:165–178. doi: 10.1038/nrg2303. [PubMed] [CrossRef] [Google Scholar]

120. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010;11:373–384. doi: 10.1038/ni.1863. [PubMed] [CrossRef] [Google Scholar]

121. Guiducci C., Gong M., Cepika A.M., Xu Z., Tripodo C., Bennett L., Crain C., Quartier P., Cush J.J., Pascual V., et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J. Exp. Med. 2013;210:2903–2919. doi: 10.1084/jem.20131044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Kawasaki T., Kawai T. Toll-like receptor signaling pathways. Front. Immunol. 2014;5:461. doi: 10.3389/fimmu.2014.00461. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Oldenburg M., Kruger A., Ferstl R., Kaufmann A., Nees G., Sigmund A., Bathke B., Lauterbach H., Suter M., Dreher S., et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science (N. Y.) 2012;337:1111–1115. doi: 10.1126/science.1220363. [PubMed] [CrossRef] [Google Scholar]

124. Andrade W.A., Souza Mdo C., Ramos-Martinez E., Nagpal K., Dutra M.S., Melo M.B., Bartholomeu D.C., Ghosh S., Golenbock D.T., Gazzinelli R.T. Combined action of nucleic acid-sensing Toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe. 2013;13:42–53. doi: 10.1016/j.chom.2012.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Mathur R., Oh H., Zhang D., Park S.G., Seo J., Koblansky A., Hayden M.S., Ghosh S. A mouse model of Salmonella typhi infection. Cell. 2012;151:590–602. doi: 10.1016/j.cell.2012.08.042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Akira S., Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004;4:499–511. doi: 10.1038/nri1391. [PubMed] [CrossRef] [Google Scholar]

127. Wang C., Chen T., Zhang J., Yang M., Li N., Xu X., Cao X. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat. Immunol. 2009;10:744–752. doi: 10.1038/ni.1742. [PubMed] [CrossRef] [Google Scholar]

128. Rathinam V.A., Vanaja S.K., Waggoner L., Sokolovska A., Becker C., Stuart L.M., Leong J.M., Fitzgerald K.A. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150:606–619. doi: 10.1016/j.cell.2012.07.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Sancho D., Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 2012;30:491–529. doi: 10.1146/annurev-immunol-031210-101352. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Zelensky A.N., Gready J.E. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–6217. doi: 10.1111/j.1742-4658.2005.05031.x. [PubMed] [CrossRef] [Google Scholar]

131. Figdor C.G., van Kooyk Y., Adema G.J. C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol. 2002;2:77–84. doi: 10.1038/nri723. [PubMed] [CrossRef] [Google Scholar]

132. Amorim K.N., Rampazo E.V., Antonialli R., Yamamoto M.M., Rodrigues M.M., Soares I.S., Boscardin S.B. The presence of T cell epitopes is important for induction of antibody responses against antigens directed to DEC205(+) dendritic cells. Sci. Rep. 2016;6:39250. doi: 10.1038/srep39250. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Boscardin S.B., Hafalla J.C., Masilamani R.F., Kamphorst A.O., Zebroski H.A., Rai U., Morrot A., Zavala F., Steinman R.M., Nussenzweig R.S., et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med. 2006;203:599–606. doi: 10.1084/jem.20051639. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Do Y., Koh H., Park C.G., Dudziak D., Seo P., Mehandru S., Choi J.H., Cheong C., Park S., Perlin D.S., et al. Targeting of LcrV virulence protein from Yersinia pestis to dendritic cells protects mice against pneumonic plague. Eur. J. Immunol. 2010;40:2791–2796. doi: 10.1002/eji.201040511. [PubMed] [CrossRef] [Google Scholar]

135. Heidkamp G.F., Neubert K., Haertel E., Nimmerjahn F., Nussenzweig M.C., Dudziak D. Efficient generation of a monoclonal antibody against the human C-type lectin receptor DCIR by targeting murine dendritic cells. Immunol. Lett. 2010;132:69–78. doi: 10.1016/j.imlet.2010.06.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Lahoud M.H., Ahmet F., Kitsoulis S., Wan S.S., Vremec D., Lee C.N., Phipson B., Shi W., Smyth G.K., Lew A.M., et al. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J. Immunol. (Baltim. Md. 1950) 2011;187:842–850. doi: 10.4049/jimmunol.1101176. [PubMed] [CrossRef] [Google Scholar]

137. Neubert K., Lehmann C.H., Heger L., Baranska A., Staedtler A.M., Buchholz V.R., Yamazaki S., Heidkamp G.F., Eissing N., Zebroski H., et al. Antigen delivery to CD11c+CD8- dendritic cells induces protective immune responses against experimental melanoma in mice in vivo. J. Immunol. (Baltim. Md. 1950) 2014;192:5830–5838. doi: 10.4049/jimmunol.1300975. [PubMed] [CrossRef] [Google Scholar]

138. Wang B., Zaidi N., He L.Z., Zhang L., Kuroiwa J.M., Keler T., Steinman R.M. Targeting of the non-mutated tumor antigen HER2/neu to mature dendritic cells induces an integrated immune response that protects against breast cancer in mice. Breast Cancer Res. BCR. 2012;14:R39. doi: 10.1186/bcr3135. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Zaneti A.B., Yamamoto M.M., Sulczewski F.B., Almeida B.D.S., Souza H.F.S., Ferreira N.S., Maeda D., Sales N.S., Rosa D.S., Ferreira L.C.S., et al. Dendritic Cell Targeting Using a DNA Vaccine Induces Specific Antibodies and CD4(+) T Cells to the Dengue Virus Envelope Protein Domain III. Front. Immunol. 2019;10:59. doi: 10.3389/fimmu.2019.00059. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Kanazawa N., Tashiro K., Inaba K., Miyachi Y. Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an activating receptor through association with Fc receptor gamma chain. J. Boil. Chem. 2003;278:32645–32652. doi: 10.1074/jbc.M304226200. [PubMed] [CrossRef] [Google Scholar]

141. Sato K., Yang X.L., Yudate T., Chung J.S., Wu J., Luby-Phelps K., Kimberly R.P., Underhill D., Cruz P.D., Jr., Ariizumi K. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J. Boil. Chem. 2006;281:38854–38866. doi: 10.1074/jbc.M606542200. [PubMed] [CrossRef] [Google Scholar]

142. Yamasaki S., Ishikawa E., Sakuma M., Hara H., Ogata K., Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 2008;9:1179–1188. doi: 10.1038/ni.1651. [PubMed] [CrossRef] [Google Scholar]

143. Ahrens S., Zelenay S., Sancho D., Hanc P., Kjaer S., Feest C., Fletcher G., Durkin C., Postigo A., Skehel M., et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36:635–645. doi: 10.1016/j.immuni.2012.03.008. [PubMed] [CrossRef] [Google Scholar]

144. Cambi A., Figdor C. Necrosis: C-type lectins sense cell death. Curr. Boil. CB. 2009;19:R375–R378. doi: 10.1016/j.cub.2009.03.032. [PubMed] [CrossRef] [Google Scholar]

145. Shrimpton R.E., Butler M., Morel A.S., Eren E., Hue S.S., Ritter M.A. CD205 (DEC-205): A recognition receptor for apoptotic and necrotic self. Mol. Immunol. 2009;46:1229–1239. doi: 10.1016/j.molimm.2008.11.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Schreibelt G., Klinkenberg L.J., Cruz L.J., Tacken P.J., Tel J., Kreutz M., Adema G.J., Brown G.D., Figdor C.G., de Vries I.J. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood. 2012;119:2284–2292. doi: 10.1182/blood-2011-08-373944. [PubMed] [CrossRef] [Google Scholar]

147. Li Y., Wang L.X., Pang P., Cui Z., Aung S., Haley D., Fox B.A., Urba W.J., Hu H.M. Tumor-derived autophagosome vaccine: Mechanism of cross-presentation and therapeutic efficacy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:7047–7057. doi: 10.1158/1078-0432.CCR-11-0951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Xing Y., Cao R., Hu H.M. TLR and NLRP3 inflammasome-dependent innate immune responses to tumor-derived autophagosomes (DRibbles) Cell Death Dis. 2016;7:e2322. doi: 10.1038/cddis.2016.206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Ye W., Xing Y., Paustian C., van de Ven R., Moudgil T., Hilton T.L., Fox B.A., Urba W.J., Zhao W., Hu H.M. Cross-presentation of viral antigens in dribbles leads to efficient activation of virus-specific human memory T cells. J. Transl. Med. 2014;12:100. doi: 10.1186/1479-5876-12-100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Yewdell J.W., Anton L.C., Bennink J.R. Defective ribosomal products (DRiPs): A major source of antigenic peptides for MHC class I molecules? J. Immunol. (Baltim. Md. 1950) 1996;157:1823–1826. [PubMed] [Google Scholar]

151. Bournazos S., Wang T.T., Dahan R., Maamary J., Ravetch J.V. Signaling by Antibodies: Recent Progress. Annu. Rev. Immunol. 2017;35:285–311. doi: 10.1146/annurev-immunol-051116-052433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Nimmerjahn F., Gordan S., Lux A. FcgammaR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 2015;36:325–336. doi: 10.1016/j.it.2015.04.005. [PubMed] [CrossRef] [Google Scholar]

153. Nimmerjahn F., Ravetch J.V. Fcgamma receptors: Old friends and new family members. Immunity. 2006;24:19–28. doi: 10.1016/j.immuni.2005.11.010. [PubMed] [CrossRef] [Google Scholar]

154. Nimmerjahn F., Ravetch J.V. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 2008;8:34–47. doi: 10.1038/nri2206. [PubMed] [CrossRef] [Google Scholar]

155. Loo Y.M., Gale M., Jr. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–692. doi: 10.1016/j.immuni.2011.05.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

156. Rodriguez K.R., Bruns A.M., Horvath C.M. MDA5 and LGP2: Accomplices and antagonists of antiviral signal transduction. J. Virol. 2014;88:8194–8200. doi: 10.1128/JVI.00640-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Sanchez David R.Y., Combredet C., Najburg V., Millot G.A., Beauclair G., Schwikowski B., Leger T., Camadro J.M., Jacob Y., Bellalou J., et al. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Sci. Signal. 2019;12:eaar3993. doi: 10.1126/scisignal.aar3993. [PubMed] [CrossRef] [Google Scholar]

158. Ablasser A., Bauernfeind F., Hartmann G., Latz E., Fitzgerald K.A., Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 2009;10:1065–1072. doi: 10.1038/ni.1779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Wilson N.S., Behrens G.M., Lundie R.J., Smith C.M., Waithman J., Young L., Forehan S.P., Mount A., Steptoe R.J., Shortman K.D., et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol. 2006;7:165–172. doi: 10.1038/ni1300. [PubMed] [CrossRef] [Google Scholar]

160. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105. doi: 10.1038/nature04734. [PubMed] [CrossRef] [Google Scholar]

161. Pantel A., Teixeira A., Haddad E., Wood E.G., Steinman R.M., Longhi M.P. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation. PLoS Biol. 2014;12:e1001759. doi: 10.1371/journal.pbio.1001759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

162. Desch A.N., Gibbings S.L., Clambey E.T., Janssen W.J., Slansky J.E., Kedl R.M., Henson P.M., Jakubzick C. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 2014;5:4674. doi: 10.1038/ncomms5674. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Harton J.A., Linhoff M.W., Zhang J., Ting J.P. Cutting edge: CATERPILLER: A large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol. (Baltim. Md. 1950) 2002;169:4088–4093. doi: 10.4049/jimmunol.169.8.4088. [PubMed] [CrossRef] [Google Scholar]

164. Velloso F.J., Trombetta-Lima M., Anschau V., Sogayar M.C., Correa R.G. NOD-like receptors: Major players (and targets) in the interface between innate immunity and cancer. Biosci. Rep. 2019;39:BSR20181709. doi: 10.1042/BSR20181709. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Warner N., Burberry A., Franchi L., Kim Y.G., McDonald C., Sartor M.A., Nunez G. A genome-wide siRNA screen reveals positive and negative regulators of the NOD2 and NF-kappaB signaling pathways. Sci. Signal. 2013;6:rs3. doi: 10.1126/scisignal.2003305. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Yeretssian G., Correa R.G., Doiron K., Fitzgerald P., Dillon C.P., Green D.R., Reed J.C., Saleh M. Non-apoptotic role of BID in inflammation and innate immunity. Nature. 2011;474:96–99. doi: 10.1038/nature09982. [PubMed] [CrossRef] [Google Scholar]

167. Magalhaes J.G., Fritz J.H., Le Bourhis L., Sellge G., Travassos L.H., Selvanantham T., Girardin S.E., Gommerman J.L., Philpott D.J. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. (Baltim. Md. 1950) 2008;181:7925–7935. doi: 10.4049/jimmunol.181.11.7925. [PubMed] [CrossRef] [Google Scholar]

168. Magalhaes J.G., Rubino S.J., Travassos L.H., Le Bourhis L., Duan W., Sellge G., Geddes K., Reardon C., Lechmann M., Carneiro L.A., et al. Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation. Proc. Natl. Acad. Sci. USA. 2011;108:14896–14901. doi: 10.1073/pnas.1015063108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Fritz J.H., Le Bourhis L., Sellge G., Magalhaes J.G., Fsihi H., Kufer T.A., Collins C., Viala J., Ferrero R.L., Girardin S.E., et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity. 2007;26:445–459. doi: 10.1016/j.immuni.2007.03.009. [PubMed] [CrossRef] [Google Scholar]

170. Cooney R., Baker J., Brain O., Danis B., Pichulik T., Allan P., Ferguson D.J., Campbell B.J., Jewell D., Simmons A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010;16:90–97. doi: 10.1038/nm.2069. [PubMed] [CrossRef] [Google Scholar]

171. Homer C.R., Kabi A., Marina-Garcia N., Sreekumar A., Nesvizhskii A.I., Nickerson K.P., Chinnaiyan A.M., Nunez G., McDonald C. A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J. Boil. Chem. 2012;287:25565–25576. doi: 10.1074/jbc.M111.326835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Homer C.R., Richmond A.L., Rebert N.A., Achkar J.P., McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139:1630–1641, e1631–e1632. doi: 10.1053/j.gastro.2010.07.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Lupfer C., Thomas P.G., Anand P.K., Vogel P., Milasta S., Martinez J., Huang G., Green M., Kundu M., Chi H., et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol. 2013;14:480–488. doi: 10.1038/ni.2563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Travassos L.H., Carneiro L.A., Ramjeet M., Hussey S., Kim Y.G., Magalhaes J.G., Yuan L., Soares F., Chea E., Le Bourhis L., et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010;11:55–62. doi: 10.1038/ni.1823. [PubMed] [CrossRef] [Google Scholar]

175. Wen H., Miao E.A., Ting J.P. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity. 2013;39:432–441. doi: 10.1016/j.immuni.2013.08.037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., MacDonald K., Speert D., Fernandes-Alnemri T., Wu J., Monks B.G., Fitzgerald K.A., et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. (Baltim. Md. 1950) 2009;183:787–791. doi: 10.4049/jimmunol.0901363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Franchi L., Eigenbrod T., Nunez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. (Baltim. Md. 1950) 2009;183:792–796. doi: 10.4049/jimmunol.0900173. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Xing Y., Yao X., Li H., Xue G., Guo Q., Yang G., An L., Zhang Y., Meng G. Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. J. Immunol. (Baltim. Md. 1950) 2017;199:1561–1566. doi: 10.4049/jimmunol.1700175. [PubMed] [CrossRef] [Google Scholar]

179. Cai X., Chen J., Xu H., Liu S., Jiang Q.X., Halfmann R., Chen Z.J. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 2014;156:1207–1222. doi: 10.1016/j.cell.2014.01.063. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Lu A., Magupalli V.G., Ruan J., Yin Q., Atianand M.K., Vos M.R., Schroder G.F., Fitzgerald K.A., Wu H., Egelman E.H. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156:1193–1206. doi: 10.1016/j.cell.2014.02.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Schmidt F.I., Lu A., Chen J.W., Ruan J., Tang C., Wu H., Ploegh H.L. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J. Exp. Med. 2016;213:771–790. doi: 10.1084/jem.20151790. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. He Y., Zeng M.Y., Yang D., Motro B., Nunez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530:354–357. doi: 10.1038/nature16959. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Shi H., Wang Y., Li X., Zhan X., Tang M., Fina M., Su L., Pratt D., Bu C.H., Hildebrand S., et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 2016;17:250–258. doi: 10.1038/ni.3333. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. He Y., Franchi L., Nunez G. TLR agonists stimulate Nlrp3-dependent IL-1beta production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J. Immunol. (Baltim. Md. 1950) 2013;190:334–339. doi: 10.4049/jimmunol.1202737. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Kayagaki N., Stowe I.B., Lee B.L., O’Rourke K., Anderson K., Warming S., Cuellar T., Haley B., Roose-Girma M., Phung Q.T., et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–671. doi: 10.1038/nature15541. [PubMed] [CrossRef] [Google Scholar]

186. Lee B.L., Stowe I.B., Gupta A., Kornfeld O.S., Roose-Girma M., Anderson K., Warming S., Zhang J., Lee W.P., Kayagaki N. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 2018;215:2279–2288. doi: 10.1084/jem.20180589. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Shi J., Zhao Y., Wang K., Shi X., Wang Y., Huang H., Zhuang Y., Cai T., Wang F., Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–665. doi: 10.1038/nature15514. [PubMed] [CrossRef] [Google Scholar]

188. Ding J., Wang K., Liu W., She Y., Sun Q., Shi J., Sun H., Wang D.C., Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535:111–116. doi: 10.1038/nature18590. [PubMed] [CrossRef] [Google Scholar]

189. He W.T., Wan H., Hu L., Chen P., Wang X., Huang Z., Yang Z.H., Zhong C.Q., Han J. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25:1285–1298. doi: 10.1038/cr.2015.139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

190. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158. doi: 10.1038/nature18629. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Zanoni I., Tan Y., Di Gioia M., Broggi A., Ruan J., Shi J., Donado C.A., Shao F., Wu H., Springstead J.R., et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science (N. Y.) 2016;352:1232–1236. doi: 10.1126/science.aaf3036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Monteleone M., Stanley A.C., Chen K.W., Brown D.L., Bezbradica J.S., von Pein J.B., Holley C.L., Boucher D., Shakespear M.R., Kapetanovic R., et al. Interleukin-1beta Maturation Triggers Its Relocation to the Plasma Membrane for Gasdermin-D-Dependent and -Independent Secretion. Cell Rep. 2018;24:1425–1433. doi: 10.1016/j.celrep.2018.07.027. [PubMed] [CrossRef] [Google Scholar]

193. Zanoni I., Tan Y., Di Gioia M., Springstead J.R., Kagan J.C. By Capturing Inflammatory Lipids Released from Dying Cells, the Receptor CD14 Induces Inflammasome-Dependent Phagocyte Hyperactivation. Immunity. 2017;47:697–709.e693. doi: 10.1016/j.immuni.2017.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Ghiringhelli F., Apetoh L., Tesniere A., Aymeric L., Ma Y., Ortiz C., Vermaelen K., Panaretakis T., Mignot G., Ullrich E., et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med. 2009;15:1170–1178. doi: 10.1038/nm.2028. [PubMed] [CrossRef] [Google Scholar]

195. Lee Y.K., Turner H., Maynard C.L., Oliver J.R., Chen D., Elson C.O., Weaver C.T. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30:92–107. doi: 10.1016/j.immuni.2008.11.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Wang Y., Godec J., Ben-Aissa K., Cui K., Zhao K., Pucsek A.B., Lee Y.K., Weaver C.T., Yagi R., Lazarevic V. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-gamma-producing T helper 17 cells. Immunity. 2014;40:355–366. doi: 10.1016/j.immuni.2014.01.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Wei G., Wei L., Zhu J., Zang C., Hu-Li J., Yao Z., Cui K., Kanno Y., Roh T.Y., Watford W.T., et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30:155–167. doi: 10.1016/j.immuni.2008.12.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Zielinski C.E., Mele F., Aschenbrenner D., Jarrossay D., Ronchi F., Gattorno M., Monticelli S., Lanzavecchia A., Sallusto F. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature. 2012;484:514–518. doi: 10.1038/nature10957. [PubMed] [CrossRef] [Google Scholar]

199. Broz P., Dixit V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016;16:407–420. doi: 10.1038/nri.2016.58. [PubMed] [CrossRef] [Google Scholar]

200. Christgen S., Place D.E., Kanneganti T.D. Toward targeting inflammasomes: Insights into their regulation and activation. Cell Res. 2020;30:315–327. doi: 10.1038/s41422-020-0295-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Burdette D.L., Monroe K.M., Sotelo-Troha K., Iwig J.S., Eckert B., Hyodo M., Hayakawa Y., Vance R.E. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–518. doi: 10.1038/nature10429. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Burdette D.L., Vance R.E. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 2013;14:19–26. doi: 10.1038/ni.2491. [PubMed] [CrossRef] [Google Scholar]

203. Ishikawa H., Barber G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–678. doi: 10.1038/nature07317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Ishikawa H., Ma Z., Barber G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–792. doi: 10.1038/nature08476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Sauer J.D., Sotelo-Troha K., von Moltke J., Monroe K.M., Rae C.S., Brubaker S.W., Hyodo M., Hayakawa Y., Woodward J.J., Portnoy D.A., et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 2011;79:688–694. doi: 10.1128/IAI.00999-10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Sun L., Wu J., Du F., Chen X., Chen Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (N. Y.) 2013;339:786–791. doi: 10.1126/science.1232458. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Sun W., Li Y., Chen L., Chen H., You F., Zhou X., Zhou Y., Zhai Z., Chen D., Jiang Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA. 2009;106:8653–8658. doi: 10.1073/pnas.0900850106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Woodward J.J., Iavarone A.T., Portnoy D.A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science (N. Y.) 2010;328:1703–1705. doi: 10.1126/science.1189801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Zhong B., Yang Y., Li S., Wang Y.Y., Li Y., Diao F., Lei C., He X., Zhang L., Tien P., et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008;29:538–550. doi: 10.1016/j.immuni.2008.09.003. [PubMed] [CrossRef] [Google Scholar]

210. Ablasser A., Schmid-Burgk J.L., Hemmerling I., Horvath G.L., Schmidt T., Latz E., Hornung V. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature. 2013;503:530–534. doi: 10.1038/nature12640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Diner E.J., Burdette D.L., Wilson S.C., Monroe K.M., Kellenberger C.A., Hyodo M., Hayakawa Y., Hammond M.C., Vance R.E. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3:1355–1361. doi: 10.1016/j.celrep.2013.05.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. McWhirter S.M., Barbalat R., Monroe K.M., Fontana M.F., Hyodo M., Joncker N.T., Ishii K.J., Akira S., Colonna M., Chen Z.J., et al. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 2009;206:1899–1911. doi: 10.1084/jem.20082874. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Salcedo R., Cataisson C., Hasan U., Yuspa S.H., Trinchieri G. MyD88 and its divergent toll in carcinogenesis. Trends Immunol. 2013;34:379–389. doi: 10.1016/j.it.2013.03.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Swann J.B., Vesely M.D., Silva A., Sharkey J., Akira S., Schreiber R.D., Smyth M.J. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc. Natl. Acad. Sci. USA. 2008;105:652–656. doi: 10.1073/pnas.0708594105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Ahn J., Xia T., Konno H., Konno K., Ruiz P., Barber G.N. Inflammation-driven carcinogenesis is mediated through STING. Nat. Commun. 2014;5:5166. doi: 10.1038/ncomms6166. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Ahn J., Konno H., Barber G.N. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene. 2015;34:5302–5308. doi: 10.1038/onc.2014.457. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Huang L., Li L., Lemos H., Chandler P.R., Pacholczyk G., Baban B., Barber G.N., Hayakawa Y., McGaha T.L., Ravishankar B., et al. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses. J. Immunol. (Baltim. Md. 1950) 2013;191:3509–3513. doi: 10.4049/jimmunol.1301419. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Lemos H., Mohamed E., Huang L., Ou R., Pacholczyk G., Arbab A.S., Munn D., Mellor A.L. STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation. Cancer Res. 2016;76:2076–2081. doi: 10.1158/0008-5472.CAN-15-1456. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Zhu Q., Man S.M., Gurung P., Liu Z., Vogel P., Lamkanfi M., Kanneganti T.D. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J. Immunol. (Baltim. Md. 1950) 2014;193:4779–4782. doi: 10.4049/jimmunol.1402051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Marcus A., Mao A.J., Lensink-Vasan M., Wang L., Vance R.E., Raulet D.H. Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell Response. Immunity. 2018;49:754–763.e754. doi: 10.1016/j.immuni.2018.09.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Hartlova A., Erttmann S.F., Raffi F.A., Schmalz A.M., Resch U., Anugula S., Lienenklaus S., Nilsson L.M., Kroger A., Nilsson J.A., et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–343. doi: 10.1016/j.immuni.2015.01.012. [PubMed] [CrossRef] [Google Scholar]

222. Kondo T., Kobayashi J., Saitoh T., Maruyama K., Ishii K.J., Barber G.N., Komatsu K., Akira S., Kawai T. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA. 2013;110:2969–2974. doi: 10.1073/pnas.1222694110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

223. Fu J., Kanne D.B., Leong M., Glickman L.H., McWhirter S.M., Lemmens E., Mechette K., Leong J.J., Lauer P., Liu W., et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 2015;7:283ra252. doi: 10.1126/scitranslmed.aaa4306. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Ohkuri T., Ghosh A., Kosaka A., Zhu J., Ikeura M., David M., Watkins S.C., Sarkar S.N., Okada H. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol. Res. 2014;2:1199–1208. doi: 10.1158/2326-6066.CIR-14-0099. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Woo S.R., Fuertes M.B., Corrales L., Spranger S., Furdyna M.J., Leung M.Y., Duggan R., Wang Y., Barber G.N., Fitzgerald K.A., et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–842. doi: 10.1016/j.immuni.2014.10.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Ahn J., Gutman D., Saijo S., Barber G.N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl. Acad. Sci. USA. 2012;109:19386–19391. doi: 10.1073/pnas.1215006109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Deng L., Liang H., Xu M., Yang X., Burnette B., Arina A., Li X.D., Mauceri H., Beckett M., Darga T., et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity. 2014;41:843–852. doi: 10.1016/j.immuni.2014.10.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Klarquist J., Hennies C.M., Lehn M.A., Reboulet R.A., Feau S., Janssen E.M. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. (Baltim. Md. 1950) 2014;193:6124–6134. doi: 10.4049/jimmunol.1401869. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Gonugunta V.K., Sakai T., Pokatayev V., Yang K., Wu J., Dobbs N., Yan N. Trafficking-Mediated STING Degradation Requires Sorting to Acidified Endolysosomes and Can Be Targeted to Enhance Anti-tumor Response. Cell Rep. 2017;21:3234–3242. doi: 10.1016/j.celrep.2017.11.061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. White M.J., McArthur K., Metcalf D., Lane R.M., Cambier J.C., Herold M.J., van Delft M.F., Bedoui S., Lessene G., Ritchie M.E., et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–1562. doi: 10.1016/j.cell.2014.11.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Corrales L., Gajewski T.F. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:4774–4779. doi: 10.1158/1078-0432.CCR-15-1362. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

232. Corrales L., Glickman L.H., McWhirter S.M., Kanne D.B., Sivick K.E., Katibah G.E., Woo S.R., Lemmens E., Banda T., Leong J.J., et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015;11:1018–1030. doi: 10.1016/j.celrep.2015.04.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

233. Dubensky T.W., Jr., Kanne D.B., Leong M.L. Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Ther. Adv. Vaccines. 2013;1:131–143. doi: 10.1177/2051013613501988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

234. Wang Z., Celis E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol. Immunother. 2015;64:1057–1066. doi: 10.1007/s00262-015-1713-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

235. Lan Y.Y., Londono D., Bouley R., Rooney M.S., Hacohen N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 2014;9:180–192. doi: 10.1016/j.celrep.2014.08.074. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Liu Y., Crowe W.N., Wang L., Lu Y., Petty W.J., Habib A.A., Zhao D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun. 2019;10:5108. doi: 10.1038/s41467-019-13094-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Lohard S., Bourgeois N., Maillet L., Gautier F., Fetiveau A., Lasla H., Nguyen F., Vuillier C., Dumont A., Moreau-Aubry A., et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat. Commun. 2020;11:259. doi: 10.1038/s41467-019-13689-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

238. Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: Reinstating immunosurveillance. Immunity. 2013;39:74–88. doi: 10.1016/j.immuni.2013.06.014. [PubMed] [CrossRef] [Google Scholar]

239. Torralba D., Baixauli F., Villarroya-Beltri C., Fernandez-Delgado I., Latorre-Pellicer A., Acin-Perez R., Martin-Cofreces N.B., Jaso-Tamame A.L., Iborra S., Jorge I., et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun. 2018;9:2658. doi: 10.1038/s41467-018-05077-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Ahn J., Barber G.N. STING signaling and host defense against microbial infection. Exp. Mol. Med. 2019;51:1–10. doi: 10.1038/s12276-019-0333-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

241. Li T., Chen Z.J. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 2018;215:1287–1299. doi: 10.1084/jem.20180139. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. Motwani M., Pesiridis S., Fitzgerald K.A. DNA sensing by the cGAS-STING pathway in health and disease. Nat. Rev. Genet. 2019;20:657–674. doi: 10.1038/s41576-019-0151-1. [PubMed] [CrossRef] [Google Scholar]

243. Woo S.R., Corrales L., Gajewski T.F. The STING pathway and the T cell-inflamed tumor microenvironment. Trends immunol. 2015;36:250–256. doi: 10.1016/j.it.2015.02.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

244. Takeuchi O., Sato S., Horiuchi T., Hoshino K., Takeda K., Dong Z., Modlin R.L., Akira S. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. (Baltim. Md. 1950) 2002;169:10–14. doi: 10.4049/jimmunol.169.1.10. [PubMed] [CrossRef] [Google Scholar]

245. Funderburg N.T., Jadlowsky J.K., Lederman M.M., Feng Z., Weinberg A., Sieg S.F. The Toll-like receptor 1/2 agonists Pam(3) CSK(4) and human beta-defensin-3 differentially induce interleukin-10 and nuclear factor-kappaB signalling patterns in human monocytes. Immunology. 2011;134:151–160. doi: 10.1111/j.1365-2567.2011.03475.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Campos M.A., Almeida I.C., Takeuchi O., Akira S., Valente E.P., Procopio D.O., Travassos L.R., Smith J.A., Golenbock D.T., Gazzinelli R.T. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. (Baltim. Md. 1950) 2001;167:416–423. doi: 10.4049/jimmunol.167.1.416. [PubMed] [CrossRef] [Google Scholar]

247. Lien E., Sellati T.J., Yoshimura A., Flo T.H., Rawadi G., Finberg R.W., Carroll J.D., Espevik T., Ingalls R.R., Radolf J.D., et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Boil. Chem. 1999;274:33419–33425. doi: 10.1074/jbc.274.47.33419. [PubMed] [CrossRef] [Google Scholar]

248. Hayashi F., Smith K.D., Ozinsky A., Hawn T.R., Yi E.C., Goodlett D.R., Eng J.K., Akira S., Underhill D.M., Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–1103. doi: 10.1038/35074106. [PubMed] [CrossRef] [Google Scholar]

249. Means T.K., Wang S., Lien E., Yoshimura A., Golenbock D.T., Fenton M.J. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. (Baltim. Md. 1950) 1999;163:3920–3927. [PubMed] [Google Scholar]

250. Brightbill H.D., Libraty D.H., Krutzik S.R., Yang R.B., Belisle J.T., Bleharski J.R., Maitland M., Norgard M.V., Plevy S.E., Smale S.T., et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science (N. Y.) 1999;285:732–736. doi: 10.1126/science.285.5428.732. [PubMed] [CrossRef] [Google Scholar]

251. Aliprantis A.O., Yang R.B., Mark M.R., Suggett S., Devaux B., Radolf J.D., Klimpel G.R., Godowski P., Zychlinsky A. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science (N. Y.) 1999;285:736–739. doi: 10.1126/science.285.5428.736. [PubMed] [CrossRef] [Google Scholar]

252. Yang R.B., Mark M.R., Gray A., Huang A., Xie M.H., Zhang M., Goddard A., Wood W.I., Gurney A.L., Godowski P.J. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998;395:284–288. doi: 10.1038/26239. [PubMed] [CrossRef] [Google Scholar]

253. Kirschning C.J., Wesche H., Merrill Ayres T., Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J. Exp. Med. 1998;188:2091–2097. doi: 10.1084/jem.188.11.2091. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

254. Schwandner R., Dziarski R., Wesche H., Rothe M., Kirschning C.J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Boil. Chem. 1999;274:17406–17409. doi: 10.1074/jbc.274.25.17406. [PubMed] [CrossRef] [Google Scholar]

255. Underhill D.M., Ozinsky A., Hajjar A.M., Stevens A., Wilson C.B., Bassetti M., Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999;401:811–815. doi: 10.1038/44605. [PubMed] [CrossRef] [Google Scholar]

256. Takeuchi O., Hoshino K., Kawai T., Sanjo H., Takada H., Ogawa T., Takeda K., Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–451. doi: 10.1016/S1074-7613(00)80119-3. [PubMed] [CrossRef] [Google Scholar]

257. Takeuchi O., Kawai T., Muhlradt P.F., Morr M., Radolf J.D., Zychlinsky A., Takeda K., Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 2001;13:933–940. doi: 10.1093/intimm/13.7.933. [PubMed] [CrossRef] [Google Scholar]

258. Gnjatic S., Sawhney N.B., Bhardwaj N. Toll-like receptor agonists: Are they good adjuvants? Cancer J. 2010;16:382–391. doi: 10.1097/PPO.0b013e3181eaca65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Vabulas R.M., Ahmad-Nejad P., Ghose S., Kirschning C.J., Issels R.D., Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Boil. Chem. 2002;277:15107–15112. doi: 10.1074/jbc.M111204200. [PubMed] [CrossRef] [Google Scholar]

260. Vabulas R.M., Braedel S., Hilf N., Singh-Jasuja H., Herter S., Ahmad-Nejad P., Kirschning C.J., Da Costa C., Rammensee H.G., Wagner H., et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Boil. Chem. 2002;277:20847–20853. doi: 10.1074/jbc.M200425200. [PubMed] [CrossRef] [Google Scholar]

261. Vabulas R.M., Ahmad-Nejad P., da Costa C., Miethke T., Kirschning C.J., Hacker H., Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Boil. Chem. 2001;276:31332–31339. doi: 10.1074/jbc.M103217200. [PubMed] [CrossRef] [Google Scholar]

262. Jiang D., Liang J., Fan J., Yu S., Chen S., Luo Y., Prestwich G.D., Mascarenhas M.M., Garg H.G., Quinn D.A., et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 2005;11:1173–1179. doi: 10.1038/nm1315. [PubMed] [CrossRef] [Google Scholar]

263. Asea A., Rehli M., Kabingu E., Boch J.A., Bare O., Auron P.E., Stevenson M.A., Calderwood S.K. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J. Boil. Chem. 2002;277:15028–15034. doi: 10.1074/jbc.M200497200. [PubMed] [CrossRef] [Google Scholar]

264. Liu-Bryan R., Scott P., Sydlaske A., Rose D.M., Terkeltaub R. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2005;52:2936–2946. doi: 10.1002/art.21238. [PubMed] [CrossRef] [Google Scholar]

265. Toussi D.N., Massari P. Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands. Vaccines. 2014;2:323–353. doi: 10.3390/vaccines2020323. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

266. Muhlradt P.F., Kiess M., Meyer H., Sussmuth R., Jung G. Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J. Exp. Med. 1997;185:1951–1958. doi: 10.1084/jem.185.11.1951. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Cataldi A., Yevsa T., Vilte D.A., Schulze K., Castro-Parodi M., Larzabal M., Ibarra C., Mercado E.C., Guzman C.A. Efficient immune responses against Intimin and EspB of enterohaemorragic Escherichia coli after intranasal vaccination using the TLR2/6 agonist MALP-2 as adjuvant. Vaccine. 2008;26:5662–5667. doi: 10.1016/j.vaccine.2008.07.027. [PubMed] [CrossRef] [Google Scholar]

268. Oosenbrug T., van de Graaff M.J., Ressing M.E., van Kasteren S.I. Chemical Tools for Studying TLR Signaling Dynamics. Cell Chem. Biol. 2017;24:801–812. doi: 10.1016/j.chembiol.2017.05.022. [PubMed] [CrossRef] [Google Scholar]

269. Sivori S., Falco M., Della Chiesa M., Carlomagno S., Vitale M., Moretta L., Moretta A. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: Induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc. Natl. Acad. Sci. USA. 2004;101:10116–10121. doi: 10.1073/pnas.0403744101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

270. Cavassani K.A., Ishii M., Wen H., Schaller M.A., Lincoln P.M., Lukacs N.W., Hogaboam C.M., Kunkel S.L. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 2008;205:2609–2621. doi: 10.1084/jem.20081370. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

271. Liu L., Botos I., Wang Y., Leonard J.N., Shiloach J., Segal D.M., Davies D.R. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science (N. Y.) 2008;320:379–381. doi: 10.1126/science.1155406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

272. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–738. doi: 10.1038/35099560. [PubMed] [CrossRef] [Google Scholar]

273. Adams M., Navabi H., Jasani B., Man S., Fiander A., Evans A.S., Donninger C., Mason M. Dendritic cell (DC) based therapy for cervical cancer: Use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R) Vaccine. 2003;21:787–790. doi: 10.1016/S0264-410X(02)00599-6. [PubMed] [CrossRef] [Google Scholar]

274. Vanpouille-Box C., Hoffmann J.A., Galluzzi L. Pharmacological modulation of nucleic acid sensors—therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2019;18:845–867. doi: 10.1038/s41573-019-0043-2. [PubMed] [CrossRef] [Google Scholar]

275. Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science (N. Y.) 1998;282:2085–2088. doi: 10.1126/science.282.5396.2085. [PubMed] [CrossRef] [Google Scholar]

276. Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 1999;189:1777–1782. doi: 10.1084/jem.189.11.1777. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Biragyn A., Ruffini P.A., Leifer C.A., Klyushnenkova E., Shakhov A., Chertov O., Shirakawa A.K., Farber J.M., Segal D.M., Oppenheim J.J., et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science (N. Y.) 2002;298:1025–1029. doi: 10.1126/science.1075565. [PubMed] [CrossRef] [Google Scholar]

278. Okamura Y., Watari M., Jerud E.S., Young D.W., Ishizaka S.T., Rose J., Chow J.C., Strauss J.F., 3rd The extra domain A of fibronectin activates Toll-like receptor 4. J. Boil. Chem. 2001;276:10229–10233. doi: 10.1074/jbc.M100099200. [PubMed] [CrossRef] [Google Scholar]

279. Smiley S.T., King J.A., Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J. Immunol. (Baltim. Md. 1950) 2001;167:2887–2894. doi: 10.4049/jimmunol.167.5.2887. [PubMed] [CrossRef] [Google Scholar]

280. Guillot L., Balloy V., McCormack F.X., Golenbock D.T., Chignard M., Si-Tahar M. Cutting edge: The immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. (Baltim. Md. 1950) 2002;168:5989–5992. doi: 10.4049/jimmunol.168.12.5989. [PubMed] [CrossRef] [Google Scholar]

281. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R., Leung Y.H., Wang H., et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–249. doi: 10.1016/j.cell.2008.02.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

282. Chase M.A., Wheeler D.S., Lierl K.M., Hughes V.S., Wong H.R., Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. J. Immunol. (Baltim. Md. 1950) 2007;179:6318–6324. doi: 10.4049/jimmunol.179.9.6318. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Ohashi K., Burkart V., Flohe S., Kolb H. Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. (Baltim. Md. 1950) 2000;164:558–561. doi: 10.4049/jimmunol.164.2.558. [PubMed] [CrossRef] [Google Scholar]

284. Apetoh L., Ghiringhelli F., Tesniere A., Obeid M., Ortiz C., Criollo A., Mignot G., Maiuri M.C., Ullrich E., Saulnier P., et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007;13:1050–1059. doi: 10.1038/nm1622. [PubMed] [CrossRef] [Google Scholar]

285. Adanitsch F., Shi J., Shao F., Beyaert R., Heine H., Zamyatina A. Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chem. Sci. 2018;9:3957–3963. doi: 10.1039/C7SC05323A. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

286. Thoelen S., De Clercq N., Tornieporth N. A prophylactic hepatitis B vaccine with a novel adjuvant system. Vaccine. 2001;19:2400–2403. doi: 10.1016/S0264-410X(00)00462-X. [PubMed] [CrossRef] [Google Scholar]

287. Nascimento E., Fernandes D.F., Vieira E.P., Campos-Neto A., Ashman J.A., Alves F.P., Coler R.N., Bogatzki L.Y., Kahn S.J., Beckmann A.M., et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with meglumine antimoniate for the treatment of cutaneous leishmaniasis. Vaccine. 2010;28:6581–6587. doi: 10.1016/j.vaccine.2010.07.063. [PubMed] [CrossRef] [Google Scholar]

288. Xiao Y., Liu F., Yang J., Zhong M., Zhang E., Li Y., Zhou D., Cao Y., Li W., Yu J., et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell. Mol. Immunol. 2015;12:729–742. doi: 10.1038/cmi.2014.110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

289. Mizel S.B., Graff A.H., Sriranganathan N., Ervin S., Lees C.J., Lively M.O., Hantgan R.R., Thomas M.J., Wood J., Bell B. Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin. Vaccine Immunol. 2009;16:21–28. doi: 10.1128/CVI.00333-08. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

290. Carapau D., Mitchell R., Nacer A., Shaw A., Othoro C., Frevert U., Nardin E. Protective humoral immunity elicited by a needle-free malaria vaccine comprised of a chimeric Plasmodium falciparum circumsporozoite protein and a Toll-like receptor 5 agonist, flagellin. Infect. Immun. 2013;81:4350–4362. doi: 10.1128/IAI.00263-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

291. Diebold S.S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (N. Y.) 2004;303:1529–1531. doi: 10.1126/science.1093616. [PubMed] [CrossRef] [Google Scholar]

292. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (N. Y.) 2004;303:1526–1529. doi: 10.1126/science.1093620. [PubMed] [CrossRef] [Google Scholar]

293. Gantier M.P., Tong S., Behlke M.A., Xu D., Phipps S., Foster P.S., Williams B.R. TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J. Immunol. (Baltim. Md. 1950) 2008;180:2117–2124. doi: 10.4049/jimmunol.180.4.2117. [PubMed] [CrossRef] [Google Scholar]

294. Kelly K.M., Zhuang H., Nacionales D.C., Scumpia P.O., Lyons R., Akaogi J., Lee P., Williams B., Yamamoto M., Akira S., et al. “Endogenous adjuvant” activity of the RNA components of lupus autoantigens Sm/RNP and Ro 60. Arthritis Rheum. 2006;54:1557–1567. doi: 10.1002/art.21819. [PubMed] [CrossRef] [Google Scholar]

295. Sioud M. Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol. Med. 2006;12:167–176. doi: 10.1016/j.molmed.2006.02.004. [PubMed] [CrossRef] [Google Scholar]

296. Van Hoeven N., Fox C.B., Granger B., Evers T., Joshi S.W., Nana G.I., Evans S.C., Lin S., Liang H., Liang L., et al. A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Sci. Rep. 2017;7:46426. doi: 10.1038/srep46426. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

297. Adams S., O’Neill D.W., Nonaka D., Hardin E., Chiriboga L., Siu K., Cruz C.M., Angiulli A., Angiulli F., Ritter E., et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J. Immunol. (Baltim. Md. 1950) 2008;181:776–784. doi: 10.4049/jimmunol.181.1.776. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

298. Smorlesi A., Papalini F., Orlando F., Donnini A., Re F., Provinciali M. Imiquimod and S-27609 as adjuvants of DNA vaccination in a transgenic murine model of HER2/neu-positive mammary carcinoma. Gene Ther. 2005;12:1324–1332. doi: 10.1038/sj.gt.3302559. [PubMed] [CrossRef] [Google Scholar]

299. Gordon J.R., Li F., Nayyar A., Xiang J., Zhang X. CD8 alpha+, but not CD8 alpha-, dendritic cells tolerize Th2 responses via contact-dependent and -independent mechanisms, and reverse airway hyperresponsiveness, Th2, and eosinophil responses in a mouse model of asthma. J. Immunol. (Baltim. Md. 1950) 2005;175:1516–1522. doi: 10.4049/jimmunol.175.3.1516. [PubMed] [CrossRef] [Google Scholar]

300. Ma F., Zhang J., Zhang J., Zhang C. The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell. Mol. Immunol. 2010;7:381–388. doi: 10.1038/cmi.2010.30. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

301. Yamamoto T., Kanuma T., Takahama S., Okamura T., Moriishi E., Ishii K.J., Terahara K., Yasutomi Y. STING agonists activate latently infected cells and enhance SIV-specific responses ex vivo in naturally SIV controlled cynomolgus macaques. Sci. Rep. 2019;9:5917. doi: 10.1038/s41598-019-42253-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

302. Demaria O., Pagni P.P., Traub S., de Gassart A., Branzk N., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., Flavell R.A., Alexopoulou L. TLR8 deficiency leads to autoimmunity in mice. J. Clin. Investig. 2010;120:3651–3662. doi: 10.1172/JCI42081. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

303. Cervantes J.L., Weinerman B., Basole C., Salazar J.C. TLR8: The forgotten relative revindicated. Cell. Mol. Immunol. 2012;9:434–438. doi: 10.1038/cmi.2012.38. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

304. Zhang P., Cox C.J., Alvarez K.M., Cunningham M.W. Cutting edge: Cardiac myosin activates innate immune responses through TLRs. J. Immunol. (Baltim. Md. 1950) 2009;183:27–31. doi: 10.4049/jimmunol.0800861. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

305. Takeshita F., Leifer C.A., Gursel I., Ishii K.J., Takeshita S., Gursel M., Klinman D.M. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. (Baltim. Md. 1950) 2001;167:3555–3558. doi: 10.4049/jimmunol.167.7.3555. [PubMed] [CrossRef] [Google Scholar]

306. Murakami Y., Fukui R., Motoi Y., Shibata T., Saitoh S.I., Sato R., Miyake K. The protective effect of the anti-Toll-like receptor 9 antibody against acute cytokine storm caused by immunostimulatory DNA. Sci. Rep. 2017;7:44042. doi: 10.1038/srep44042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

307. Leadbetter E.A., Rifkin I.R., Hohlbaum A.M., Beaudette B.C., Shlomchik M.J., Marshak-Rothstein A. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416:603–607. doi: 10.1038/416603a. [PubMed] [CrossRef] [Google Scholar]

308. Viglianti G.A., Lau C.M., Hanley T.M., Miko B.A., Shlomchik M.J., Marshak-Rothstein A. Activation of autoreactive B cells by CpG dsDNA. Immunity. 2003;19:837–847. doi: 10.1016/S1074-7613(03)00323-6. [PubMed] [CrossRef] [Google Scholar]

309. Tian J., Avalos A.M., Mao S.Y., Chen B., Senthil K., Wu H., Parroche P., Drabic S., Golenbock D., Sirois C., et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 2007;8:487–496. doi: 10.1038/ni1457. [PubMed] [CrossRef] [Google Scholar]

310. Yeh D.W., Lai C.Y., Liu Y.L., Lu C.H., Tseng P.H., Yuh C.H., Yu G.Y., Liu S.J., Leng C.H., Chuang T.H. CpG-oligodeoxynucleotides developed for grouper toll-like receptor (TLR) 21s effectively activate mouse and human TLR9s mediated immune responses. Sci. Rep. 2017;7:17297. doi: 10.1038/s41598-017-17609-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

311. Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Krieg A.M., Li Y., Laframboise C., Al Adhami M.J., Khaliq Y., Seguin I., et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004;22:3136–3143. doi: 10.1016/j.vaccine.2004.01.058. [PubMed] [CrossRef] [Google Scholar]

312. Halperin S.A., Van Nest G., Smith B., Abtahi S., Whiley H., Eiden J.J. A phase I study of the safety and immunogenicity of recombinant hepatitis B surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide adjuvant. Vaccine. 2003;21:2461–2467. doi: 10.1016/S0264-410X(03)00045-8. [PubMed] [CrossRef] [Google Scholar]

313. Oosting M., Cheng S.C., Bolscher J.M., Vestering-Stenger R., Plantinga T.S., Verschueren I.C., Arts P., Garritsen A., van Eenennaam H., Sturm P., et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc. Natl. Acad. Sci. USA. 2014;111:E4478–E4484. doi: 10.1073/pnas.1410293111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

314. Henrick B.M., Yao X.D., Zahoor M.A., Abimiku A., Osawe S., Rosenthal K.L. TLR10 Senses HIV-1 Proteins and Significantly Enhances HIV-1 Infection. Front. Immunol. 2019;10:482. doi: 10.3389/fimmu.2019.00482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

315. Raetz M., Kibardin A., Sturge C.R., Pifer R., Li H., Burstein E., Ozato K., Larin S., Yarovinsky F. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. J. Immunol. (Baltim. Md. 1950) 2013;191:4818–4827. doi: 10.4049/jimmunol.1301301. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

316. Koblansky A.A., Jankovic D., Oh H., Hieny S., Sungnak W., Mathur R., Hayden M.S., Akira S., Sher A., Ghosh S. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013;38:119–130. doi: 10.1016/j.immuni.2012.09.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

317. Yang Y., Wang C., Cheng P., Zhang X., Li X., Hu Y., Xu F., Hong F., Dong G., Xiong H. CD180 Ligation Inhibits TLR7- and TLR9-Mediated Activation of Macrophages and Dendritic Cells Through the Lyn-SHP-1/2 Axis in Murine Lupus. Front. Immunol. 2018;9:2643. doi: 10.3389/fimmu.2018.02643. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

318. Ramanjulu J.M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.Y., Tran J.L., Moore P., Lehmann S., Eberl H.C., et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439–443. doi: 10.1038/s41586-018-0705-y. [PubMed] [CrossRef] [Google Scholar]

319. Pichlmair A., Schulz O., Tan C.P., Naslund T.I., Liljestrom P., Weber F., Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. Science (N. Y.) 2006;314:997–1001. doi: 10.1126/science.1132998. [PubMed] [CrossRef] [Google Scholar]

320. Zhao K., Du J., Peng Y., Li P., Wang S., Wang Y., Hou J., Kang J., Zheng W., Hua S., et al. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun. 2018;90:105–115. doi: 10.1016/j.jaut.2018.02.007. [PubMed] [CrossRef] [Google Scholar]

321. Zhao Y., Ye X., Dunker W., Song Y., Karijolich J. RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nat. Commun. 2018;9:4841. doi: 10.1038/s41467-018-07314-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

322. Kasumba D.M., Grandvaux N. Therapeutic Targeting of RIG-I and MDA5 Might Not Lead to the Same Rome. Trends Pharm. Sci. 2019;40:116–127. doi: 10.1016/j.tips.2018.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

323. Linehan M.M., Dickey T.H., Molinari E.S., Fitzgerald M.E., Potapova O., Iwasaki A., Pyle A.M. A minimal RNA ligand for potent RIG-I activation in living mice. Sci. Adv. 2018;4:e1701854. doi: 10.1126/sciadv.1701854. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

324. Dias Junior A.G., Sampaio N.G., Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019;27:75–85. doi: 10.1016/j.tim.2018.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

325. Ahmad S., Mu X., Yang F., Greenwald E., Park J.W., Jacob E., Zhang C.Z., Hur S. Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell. 2018;172:797–810.e713. doi: 10.1016/j.cell.2017.12.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

326. Dhir A., Dhir S., Borowski L.S., Jimenez L., Teitell M., Rotig A., Crow Y.J., Rice G.I., Duffy D., Tamby C., et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature. 2018;560:238–242. doi: 10.1038/s41586-018-0363-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

327. Roulois D., Loo Yau H., Singhania R., Wang Y., Danesh A., Shen S.Y., Han H., Liang G., Jones P.A., Pugh T.J., et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell. 2015;162:961–973. doi: 10.1016/j.cell.2015.07.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

328. Bevan M.J. Helping the CD8(+) T-cell response. Nat. Rev. Immunol. 2004;4:595–602. doi: 10.1038/nri1413. [PubMed] [CrossRef] [Google Scholar]

329. Borst J., Ahrends T., Babala N., Melief C.J.M., Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2018;18:635–647. doi: 10.1038/s41577-018-0044-0. [PubMed] [CrossRef] [Google Scholar]

330. Janssen E.M., Lemmens E.E., Wolfe T., Christen U., von Herrath M.G., Schoenberger S.P. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421:852–856. doi: 10.1038/nature01441. [PubMed] [CrossRef] [Google Scholar]

331. Laidlaw B.J., Craft J.E., Kaech S.M. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat. Rev. Immunol. 2016;16:102–111. doi: 10.1038/nri.2015.10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

332. Shedlock D.J., Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science (N. Y.) 2003;300:337–339. doi: 10.1126/science.1082305. [PubMed] [CrossRef] [Google Scholar]

333. Hunder N.N., Wallen H., Cao J., Hendricks D.W., Reilly J.Z., Rodmyre R., Jungbluth A., Gnjatic S., Thompson J.A., Yee C. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 2008;358:2698–2703. doi: 10.1056/NEJMoa0800251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

334. Tran E., Turcotte S., Gros A., Robbins P.F., Lu Y.C., Dudley M.E., Wunderlich J.R., Somerville R.P., Hogan K., Hinrichs C.S., et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science (N. Y.) 2014;344:641–645. doi: 10.1126/science.1251102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

335. Billings P., Burakoff S., Dorf M.E., Benacerraf B. Cytotoxic T lymphocytes specific for I region determinants do not require interactions with H-2K or D gene products. J. Exp. Med. 1977;145:1387–1392. doi: 10.1084/jem.145.5.1387. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

336. Takeuchi A., Saito T. CD4 CTL, a Cytotoxic Subset of CD4(+) T Cells, Their Differentiation and Function. Front. Immunol. 2017;8:194. doi: 10.3389/fimmu.2017.00194. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Wagner H., Gotze D., Ptschelinzew L., Rollinghoff M. Induction of cytotoxic T lymphocytes against I-region-coded determinants: In vitro evidence for a third histocompatibility locus in the mouse. J. Exp. Med. 1975;142:1477–1487. doi: 10.1084/jem.142.6.1477. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

338. Quezada S.A., Simpson T.R., Peggs K.S., Merghoub T., Vider J., Fan X., Blasberg R., Yagita H., Muranski P., Antony P.A., et al. Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 2010;207:637–650. doi: 10.1084/jem.20091918. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

339. Xie Y., Akpinarli A., Maris C., Hipkiss E.L., Lane M., Kwon E.K., Muranski P., Restifo N.P., Antony P.A. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 2010;207:651–667. doi: 10.1084/jem.20091921. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

340. Eickhoff S., Brewitz A., Gerner M.Y., Klauschen F., Komander K., Hemmi H., Garbi N., Kaisho T., Germain R.N., Kastenmuller W. Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions. Cell. 2015;162:1322–1337. doi: 10.1016/j.cell.2015.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

341. Hor J.L., Whitney P.G., Zaid A., Brooks A.G., Heath W.R., Mueller S.N. Spatiotemporally Distinct Interactions with Dendritic Cell Subsets Facilitates CD4+ and CD8+ T Cell Activation to Localized Viral Infection. Immunity. 2015;43:554–565. doi: 10.1016/j.immuni.2015.07.020. [PubMed] [CrossRef] [Google Scholar]

342. Allan R.S., Waithman J., Bedoui S., Jones C.M., Villadangos J.A., Zhan Y., Lew A.M., Shortman K., Heath W.R., Carbone F.R. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity. 2006;25:153–162. doi: 10.1016/j.immuni.2006.04.017. [PubMed] [CrossRef] [Google Scholar]

343. Schoenberger S.P., Toes R.E., van der Voort E.I., Offringa R., Melief C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393:480–483. doi: 10.1038/31002. [PubMed] [CrossRef] [Google Scholar]

344. Sun J.C., Bevan M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science (N. Y.) 2003;300:339–342. doi: 10.1126/science.1083317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

345. Ahrends T., Spanjaard A., Pilzecker B., Babala N., Bovens A., Xiao Y., Jacobs H., Borst J. CD4(+) T Cell Help Confers a Cytotoxic T Cell Effector Program Including Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. Immunity. 2017;47:848–861.e845. doi: 10.1016/j.immuni.2017.10.009. [PubMed] [CrossRef] [Google Scholar]

346. Bennett S.R., Carbone F.R., Karamalis F., Flavell R.A., Miller J.F., Heath W.R. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–480. doi: 10.1038/30996. [PubMed] [CrossRef] [Google Scholar]

347. Calabro S., Liu D., Gallman A., Nascimento M.S., Yu Z., Zhang T.T., Chen P., Zhang B., Xu L., Gowthaman U., et al. Differential Intrasplenic Migration of Dendritic Cell Subsets Tailors Adaptive Immunity. Cell Rep. 2016;16:2472–2485. doi: 10.1016/j.celrep.2016.07.076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

348. Castellino F., Huang A.Y., Altan-Bonnet G., Stoll S., Scheinecker C., Germain R.N. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature. 2006;440:890–895. doi: 10.1038/nature04651. [PubMed] [CrossRef] [Google Scholar]

349. Ridge J.P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478. doi: 10.1038/30989. [PubMed] [CrossRef] [Google Scholar]

350. Baptista A.P., Gola A., Huang Y., Milanez-Almeida P., Torabi-Parizi P., Urban J.F., Jr., Shapiro V.S., Gerner M.Y., Germain R.N. The Chemoattractant Receptor Ebi2 Drives Intranodal Naive CD4(+) T Cell Peripheralization to Promote Effective Adaptive Immunity. Immunity. 2019;50:1188–1201.e1186. doi: 10.1016/j.immuni.2019.04.001. [PubMed] [CrossRef] [Google Scholar]

351. Gerner M.Y., Kastenmuller W., Ifrim I., Kabat J., Germain R.N. Histo-cytometry: A method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37:364–376. doi: 10.1016/j.immuni.2012.07.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

352. Hoyer S., Prommersberger S., Pfeiffer I.A., Schuler-Thurner B., Schuler G., Dorrie J., Schaft N. Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: It takes three to tango. Eur. J. Immunol. 2014;44:3543–3559. doi: 10.1002/eji.201444477. [PubMed] [CrossRef] [Google Scholar]

353. Sokke Umeshappa C., Hebbandi Nanjundappa R., Xie Y., Freywald A., Deng Y., Ma H., Xiang J. CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination. PLoS ONE. 2012;7:e47004. doi: 10.1371/journal.pone.0047004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

354. Wilson E.B., Livingstone A.M. Cutting edge: CD4+ T cell-derived IL-2 is essential for help-dependent primary CD8+ T cell responses. J. Immunol. (Baltim. Md. 1950) 2008;181:7445–7448. doi: 10.4049/jimmunol.181.11.7445. [PubMed] [CrossRef] [Google Scholar]

355. Provine N.M., Larocca R.A., Aid M., Penaloza-MacMaster P., Badamchi-Zadeh A., Borducchi E.N., Yates K.B., Abbink P., Kirilova M., Ng’ang’a D., et al. Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. J. Immunol. (Baltim. Md. 1950) 2016;197:1809–1822. doi: 10.4049/jimmunol.1600591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

356. Nakanishi Y., Lu B., Gerard C., Iwasaki A. CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature. 2009;462:510–513. doi: 10.1038/nature08511. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

357. Spitzer M.H., Carmi Y., Reticker-Flynn N.E., Kwek S.S., Madhireddy D., Martins M.M., Gherardini P.F., Prestwood T.R., Chabon J., Bendall S.C., et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017;168:487–502. doi: 10.1016/j.cell.2016.12.022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

358. Togashi Y., Shitara K., Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019;16:356–371. doi: 10.1038/s41571-019-0175-7. [PubMed] [CrossRef] [Google Scholar]

359. Plitas G., Rudensky A.Y. Regulatory T Cells in Cancer. Annu. Rev. Cancer Biol. 2020;4:459–477. doi: 10.1146/annurev-cancerbio-030419-033428. [CrossRef] [Google Scholar]

360. Kalia V., Penny L.A., Yuzefpolskiy Y., Baumann F.M., Sarkar S. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4. Immunity. 2015;42:1116–1129. doi: 10.1016/j.immuni.2015.05.023. [PubMed] [CrossRef] [Google Scholar]

361. Pace L., Tempez A., Arnold-Schrauf C., Lemaitre F., Bousso P., Fetler L., Sparwasser T., Amigorena S. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science (N. Y.) 2012;338:532–536. doi: 10.1126/science.1227049. [PubMed] [CrossRef] [Google Scholar]

362. Curtsinger J.M., Lins D.C., Mescher M.F. Signal 3 determines tolerance versus full activation of naive CD8 T cells: Dissociating proliferation and development of effector function. J. Exp. Med. 2003;197:1141–1151. doi: 10.1084/jem.20021910. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

363. Curtsinger J.M., Schmidt C.S., Mondino A., Lins D.C., Kedl R.M., Jenkins M.K., Mescher M.F. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J. Immunol. (Baltim. Md. 1950) 1999;162:3256–3262. [PubMed] [Google Scholar]

364. Curtsinger J.M., Valenzuela J.O., Agarwal P., Lins D., Mescher M.F. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. (Baltim. Md. 1950) 2005;174:4465–4469. doi: 10.4049/jimmunol.174.8.4465. [PubMed] [CrossRef] [Google Scholar]

365. Ehrich E.W., Devaux B., Rock E.P., Jorgensen J.L., Davis M.M., Chien Y.H. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J. Exp. Med. 1993;178:713–722. doi: 10.1084/jem.178.2.713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

366. Wu L.C., Tuot D.S., Lyons D.S., Garcia K.C., Davis M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature. 2002;418:552–556. doi: 10.1038/nature00920. [PubMed] [CrossRef] [Google Scholar]

367. Henrickson S.E., Mempel T.R., Mazo I.B., Liu B., Artyomov M.N., Zheng H., Peixoto A., Flynn M.P., Senman B., Junt T., et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 2008;9:282–291. doi: 10.1038/ni1559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

368. Henrickson S.E., Perro M., Loughhead S.M., Senman B., Stutte S., Quigley M., Alexe G., Iannacone M., Flynn M.P., Omid S., et al. Antigen availability determines CD8(+) T cell-dendritic cell interaction kinetics and memory fate decisions. Immunity. 2013;39:496–507. doi: 10.1016/j.immuni.2013.08.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

369. Manz B.N., Jackson B.L., Petit R.S., Dustin M.L., Groves J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl. Acad. Sci. USA. 2011;108:9089–9094. doi: 10.1073/pnas.1018771108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

370. Bedoui S., Whitney P.G., Waithman J., Eidsmo L., Wakim L., Caminschi I., Allan R.S., Wojtasiak M., Shortman K., Carbone F.R., et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 2009;10:488–495. doi: 10.1038/ni.1724. [PubMed] [CrossRef] [Google Scholar]

371. Jongbloed S.L., Kassianos A.J., McDonald K.J., Clark G.J., Ju X., Angel C.E., Chen C.J., Dunbar P.R., Wadley R.B., Jeet V., et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 2010;207:1247–1260. doi: 10.1084/jem.20092140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

372. Appleman L.J., Berezovskaya A., Grass I., Boussiotis V.A. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J. Immunol. (Baltim. Md. 1950) 2000;164:144–151. doi: 10.4049/jimmunol.164.1.144. [PubMed] [CrossRef] [Google Scholar]

373. Krummel M.F., Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 1995;182:459–465. doi: 10.1084/jem.182.2.459. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

374. Marengere L.E., Waterhouse P., Duncan G.S., Mittrucker H.W., Feng G.S., Mak T.W. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science (N. Y.) 1996;272:1170–1173. doi: 10.1126/science.272.5265.1170. [PubMed] [CrossRef] [Google Scholar]

375. van der Merwe P.A., Bodian D.L., Daenke S., Linsley P., Davis S.J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 1997;185:393–403. doi: 10.1084/jem.185.3.393. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

376. Waterhouse P., Penninger J.M., Timms E., Wakeham A., Shahinian A., Lee K.P., Thompson C.B., Griesser H., Mak T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science (N. Y.) 1995;270:985–988. doi: 10.1126/science.270.5238.985. [PubMed] [CrossRef] [Google Scholar]

377. Collins A.V., Brodie D.W., Gilbert R.J., Iaboni A., Manso-Sancho R., Walse B., Stuart D.I., van der Merwe P.A., Davis S.J. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17:201–210. doi: 10.1016/S1074-7613(02)00362-X. [PubMed] [CrossRef] [Google Scholar]

378. Rowshanravan B., Halliday N., Sansom D.M. CTLA-4: A moving target in immunotherapy. Blood. 2018;131:58–67. doi: 10.1182/blood-2017-06-741033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

379. Schwartz J.C., Zhang X., Fedorov A.A., Nathenson S.G., Almo S.C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410:604–608. doi: 10.1038/35069112. [PubMed] [CrossRef] [Google Scholar]

380. Linsley P.S., Bradshaw J., Greene J., Peach R., Bennett K.L., Mittler R.S. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–543. doi: 10.1016/S1074-7613(00)80480-X. [PubMed] [CrossRef] [Google Scholar]

381. Shiratori T., Miyatake S., Ohno H., Nakaseko C., Isono K., Bonifacino J.S., Saito T. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997;6:583–589. doi: 10.1016/S1074-7613(00)80346-5. [PubMed] [CrossRef] [Google Scholar]

382. Walunas T.L., Lenschow D.J., Bakker C.Y., Linsley P.S., Freeman G.J., Green J.M., Thompson C.B., Bluestone J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–413. doi: 10.1016/1074-7613(94)90071-X. [PubMed] [CrossRef] [Google Scholar]

383. Qureshi O.S., Zheng Y., Nakamura K., Attridge K., Manzotti C., Schmidt E.M., Baker J., Jeffery L.E., Kaur S., Briggs Z., et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science (N. Y.) 2011;332:600–603. doi: 10.1126/science.1202947. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

384. Leach D.R., Krummel M.F., Allison J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science (N. Y.) 1996;271:1734–1736. doi: 10.1126/science.271.5256.1734. [PubMed] [CrossRef] [Google Scholar]

385. Ingram J.R., Blomberg O.S., Rashidian M., Ali L., Garforth S., Fedorov E., Fedorov A.A., Bonanno J.B., Le Gall C., Crowley S., et al. Anti-CTLA-4 therapy requires an Fc domain for efficacy. Proc. Natl. Acad. Sci. USA. 2018;115:3912–3917. doi: 10.1073/pnas.1801524115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

386. Ramagopal U.A., Liu W., Garrett-Thomson S.C., Bonanno J.B., Yan Q., Srinivasan M., Wong S.C., Bell A., Mankikar S., Rangan V.S., et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc. Natl. Acad. Sci. USA. 2017;114:E4223–E4232. doi: 10.1073/pnas.1617941114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

387. Read S., Greenwald R., Izcue A., Robinson N., Mandelbrot D., Francisco L., Sharpe A.H., Powrie F. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. (Baltim. Md. 1950) 2006;177:4376–4383. doi: 10.4049/jimmunol.177.7.4376. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

388. Simpson T.R., Li F., Montalvo-Ortiz W., Sepulveda M.A., Bergerhoff K., Arce F., Roddie C., Henry J.Y., Yagita H., Wolchok J.D., et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 2013;210:1695–1710. doi: 10.1084/jem.20130579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

389. Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T., Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science (N. Y.) 2008;322:271–275. doi: 10.1126/science.1160062. [PubMed] [CrossRef] [Google Scholar]

390. Boutros C., Tarhini A., Routier E., Lambotte O., Ladurie F.L., Carbonnel F., Izzeddine H., Marabelle A., Champiat S., Berdelou A., et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016;13:473–486. doi: 10.1038/nrclinonc.2016.58. [PubMed] [CrossRef] [Google Scholar]

391. Verhagen J., Genolet R., Britton G.J., Stevenson B.J., Sabatos-Peyton C.A., Dyson J., Luescher I.F., Wraith D.C. CTLA-4 controls the thymic development of both conventional and regulatory T cells through modulation of the TCR repertoire. Proc. Natl. Acad. Sci. USA. 2013;110:E221–E230. doi: 10.1073/pnas.1208573110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

392. Vetizou M., Pitt J.M., Daillere R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (N. Y.) 2015;350:1079–1084. doi: 10.1126/science.aad1329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

393. Zenke S., Palm M.M., Braun J., Gavrilov A., Meiser P., Bottcher J.P., Beyersdorf N., Ehl S., Gerard A., Lammermann T., et al. Quorum Regulation via Nested Antagonistic Feedback Circuits Mediated by the Receptors CD28 and CTLA-4 Confers Robustness to T Cell Population Dynamics. Immunity. 2020;52:313–327.e317. doi: 10.1016/j.immuni.2020.01.018. [PubMed] [CrossRef] [Google Scholar]

394. Gu P., Gao J.F., D’Souza C.A., Kowalczyk A., Chou K.Y., Zhang L. Trogocytosis of CD80 and CD86 by induced regulatory T cells. Cell Mol. Immunol. 2012;9:136–146. doi: 10.1038/cmi.2011.62. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

395. Tatari-Calderone Z., Semnani R.T., Nutman T.B., Schlom J., Sabzevari H. Acquisition of CD80 by human T cells at early stages of activation: Functional involvement of CD80 acquisition in T cell to T cell interaction. J. Immunol. (Baltim. Md. 1950) 2002;169:6162–6169. doi: 10.4049/jimmunol.169.11.6162. [PubMed] [CrossRef] [Google Scholar]

396. Aicher A., Hayden-Ledbetter M., Brady W.A., Pezzutto A., Richter G., Magaletti D., Buckwalter S., Ledbetter J.A., Clark E.A. Characterization of human inducible costimulator ligand expression and function. J. Immunol. (Baltim. Md. 1950) 2000;164:4689–4696. doi: 10.4049/jimmunol.164.9.4689. [PubMed] [CrossRef] [Google Scholar]

397. Aspord C., Leccia M.T., Charles J., Plumas J. Plasmacytoid dendritic cells support melanoma progression by promoting Th2 and regulatory immunity through OX40L and ICOSL. Cancer Immunol. Res. 2013;1:402–415. doi: 10.1158/2326-6066.CIR-13-0114-T. [PubMed] [CrossRef] [Google Scholar]

398. Gariepy J., Prodeus A., Sparkes A., Fischer N., Saha S. A powerful ICOS agonist that enhances anti-tumor immune responses restored by immune checkpoint inhibitors. J. Immunol. 2019;202:71–75. [Google Scholar]

399. Hutloff A., Dittrich A.M., Beier K.C., Eljaschewitsch B., Kraft R., Anagnostopoulos I., Kroczek R.A. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397:263–266. doi: 10.1038/16717. [PubMed] [CrossRef] [Google Scholar]

400. Mages H.W., Hutloff A., Heuck C., Buchner K., Himmelbauer H., Oliveri F., Kroczek R.A. Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur. J. Immunol. 2000;30:1040–1047. doi: 10.1002/(SICI)1521-4141(200004)30:4<1040::AID-IMMU1040>3.0.CO;2-6. [PubMed] [CrossRef] [Google Scholar]

401. Wikenheiser D.J., Stumhofer J.S. ICOS Co-Stimulation: Friend or Foe? Front. Immunol. 2016;7:304. doi: 10.3389/fimmu.2016.00304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

402. Watanabe M., Takagi Y., Kotani M., Hara Y., Inamine A., Hayashi K., Ogawa S., Takeda K., Tanabe K., Abe R. Down-regulation of ICOS ligand by interaction with ICOS functions as a regulatory mechanism for immune responses. J. Immunol. (Baltim. Md. 1950) 2008;180:5222–5234. doi: 10.4049/jimmunol.180.8.5222. [PubMed] [CrossRef] [Google Scholar]

403. Hedl M., Lahiri A., Ning K., Cho J.H., Abraham C. Pattern recognition receptor signaling in human dendritic cells is enhanced by ICOS ligand and modulated by the Crohn’s disease ICOSLG risk allele. Immunity. 2014;40:734–746. doi: 10.1016/j.immuni.2014.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

404. Busse M., Krech M., Meyer-Bahlburg A., Hennig C., Hansen G. ICOS mediates the generation and function of CD4+CD25+Foxp3+ regulatory T cells conveying respiratory tolerance. J. Immunol. (Baltim. Md. 1950) 2012;189:1975–1982. doi: 10.4049/jimmunol.1103581. [PubMed] [CrossRef] [Google Scholar]

405. Redpath S.A., van der Werf N., Cervera A.M., MacDonald A.S., Gray D., Maizels R.M., Taylor M.D. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur. J. Immunol. 2013;43:705–715. doi: 10.1002/eji.201242794. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

406. Faget J., Bendriss-Vermare N., Gobert M., Durand I., Olive D., Biota C., Bachelot T., Treilleux I., Goddard-Leon S., Lavergne E., et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res. 2012;72:6130–6141. doi: 10.1158/0008-5472.CAN-12-2409. [PubMed] [CrossRef] [Google Scholar]

407. Fan X., Quezada S.A., Sepulveda M.A., Sharma P., Allison J.P. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 2014;211:715–725. doi: 10.1084/jem.20130590. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

408. Carthon B.C., Wolchok J.D., Yuan J., Kamat A., Ng Tang D.S., Sun J., Ku G., Troncoso P., Logothetis C.J., Allison J.P., et al. Preoperative CTLA-4 blockade: Tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010;16:2861–2871. doi: 10.1158/1078-0432.CCR-10-0569. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

409. Chen H., Liakou C.I., Kamat A., Pettaway C., Ward J.F., Tang D.N., Sun J., Jungbluth A.A., Troncoso P., Logothetis C., et al. Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc. Natl. Acad. Sci. USA. 2009;106:2729–2734. doi: 10.1073/pnas.0813175106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

410. Liakou C.I., Kamat A., Tang D.N., Chen H., Sun J., Troncoso P., Logothetis C., Sharma P. CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl. Acad. Sci. USA. 2008;105:14987–14992. doi: 10.1073/pnas.0806075105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

411. Ng Tang D., Shen Y., Sun J., Wen S., Wolchok J.D., Yuan J., Allison J.P., Sharma P. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol. Res. 2013;1:229–234. doi: 10.1158/2326-6066.CIR-13-0020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

412. Chen H., Fu T., Suh W.K., Tsavachidou D., Wen S., Gao J., Ng Tang D., He Q., Sun J., Sharma P. CD4 T cells require ICOS-mediated PI3K signaling to increase T-Bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol. Res. 2014;2:167–176. doi: 10.1158/2326-6066.CIR-13-0155. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

413. Saoulli K., Lee S.Y., Cannons J.L., Yeh W.C., Santana A., Goldstein M.D., Bangia N., DeBenedette M.A., Mak T.W., Choi Y., et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J. Exp. Med. 1998;187:1849–1862. doi: 10.1084/jem.187.11.1849. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

414. Vezys V., Penaloza-MacMaster P., Barber D.L., Ha S.J., Konieczny B., Freeman G.J., Mittler R.S., Ahmed R. 4-1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. J. Immunol. (Baltim. Md. 1950) 2011;187:1634–1642. doi: 10.4049/jimmunol.1100077. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

415. Placke T., Kopp H.G., Salih H.R. Glucocorticoid-induced TNFR-related (GITR) protein and its ligand in antitumor immunity: Functional role and therapeutic modulation. Clin. Dev. Immunol. 2010;2010:239083. doi: 10.1155/2010/239083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

416. Gurney A.L., Marsters S.A., Huang R.M., Pitti R.M., Mark D.T., Baldwin D.T., Gray A.M., Dowd A.D., Brush A.D., Heldens A.D., et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Boil. CB. 1999;9:215–218. doi: 10.1016/S0960-9822(99)80093-1. [PubMed] [CrossRef] [Google Scholar]

417. Kamimura Y., Iwai H., Piao J., Hashiguchi M., Azuma M. The glucocorticoid-induced TNF receptor-related protein (GITR)-GITR ligand pathway acts as a mediator of cutaneous dendritic cell migration and promotes T cell-mediated acquired immunity. J. Immunol. (Baltim. Md. 1950) 2009;182:2708–2716. doi: 10.4049/jimmunol.0803704. [PubMed] [CrossRef] [Google Scholar]

418. Kwon B., Yu K.Y., Ni J., Yu G.L., Jang I.K., Kim Y.J., Xing L., Liu D., Wang S.X., Kwon B.S. Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J. Boil. Chem. 1999;274:6056–6061. doi: 10.1074/jbc.274.10.6056. [PubMed] [CrossRef] [Google Scholar]

419. Hwang H., Lee S., Lee W.H., Lee H.J., Suk K. Stimulation of glucocorticoid-induced tumor necrosis factor receptor family-related protein ligand (GITRL) induces inflammatory activation of microglia in culture. J. Neurosci. Res. 2010;88:2188–2196. doi: 10.1002/jnr.22378. [PubMed] [CrossRef] [Google Scholar]

420. Kim J.D., Choi B.K., Bae J.S., Lee U.H., Han I.S., Lee H.W., Youn B.S., Vinay D.S., Kwon B.S. Cloning and characterization of GITR ligand. Genes Immun. 2003;4:564–569. doi: 10.1038/sj.gene.6364026. [PubMed] [CrossRef] [Google Scholar]

421. McHugh R.S., Whitters M.J., Piccirillo C.A., Young D.A., Shevach E.M., Collins M., Byrne M.C. CD4(+)CD25(+) immunoregulatory T cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity. 2002;16:311–323. doi: 10.1016/S1074-7613(02)00280-7. [PubMed] [CrossRef] [Google Scholar]

422. Suvas S., Kim B., Sarangi P.P., Tone M., Waldmann H., Rouse B.T. In vivo kinetics of GITR and GITR ligand expression and their functional significance in regulating viral immunopathology. J. Virol. 2005;79:11935–11942. doi: 10.1128/JVI.79.18.11935-11942.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

423. Tone M., Tone Y., Adams E., Yates S.F., Frewin M.R., Cobbold S.P., Waldmann H. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc. Natl. Acad. Sci. USA. 2003;100:15059–15064. doi: 10.1073/pnas.2334901100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

424. Ji H.B., Liao G., Faubion W.A., Abadia-Molina A.C., Cozzo C., Laroux F.S., Caton A., Terhorst C. Cutting edge: The natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J. Immunol. (Baltim. Md. 1950) 2004;172:5823–5827. doi: 10.4049/jimmunol.172.10.5823. [PubMed] [CrossRef] [Google Scholar]

425. Stephens G.L., McHugh R.S., Whitters M.J., Young D.A., Luxenberg D., Carreno B.M., Collins M., Shevach E.M. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol. (Baltim. Md. 1950) 2004;173:5008–5020. doi: 10.4049/jimmunol.173.8.5008. [PubMed] [CrossRef] [Google Scholar]

426. Vecchiarelli A., Pericolini E., Gabrielli E., Agostini M., Bistoni F., Nocentini G., Cenci E., Riccardi C. The GITRL-GITR system alters TLR-4 expression on DC during fungal infection. Cell. Immunol. 2009;257:13–22. doi: 10.1016/j.cellimm.2009.02.001. [PubMed] [CrossRef] [Google Scholar]

427. Tuyaerts S., Van Meirvenne S., Bonehill A., Heirman C., Corthals J., Waldmann H., Breckpot K., Thielemans K., Aerts J.L. Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. J. Leukoc. Boil. 2007;82:93–105. doi: 10.1189/jlb.0906568. [PubMed] [CrossRef] [Google Scholar]

428. Cho J.S., Hsu J.V., Morrison S.L. Localized expression of GITR-L in the tumor microenvironment promotes CD8+ T cell dependent anti-tumor immunity. Cancer Immunol. Immunother. 2009;58:1057–1069. doi: 10.1007/s00262-008-0622-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

429. Cohen A.D., Diab A., Perales M.A., Wolchok J.D., Rizzuto G., Merghoub T., Huggins D., Liu C., Turk M.J., Restifo N.P., et al. Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res. 2006;66:4904–4912. doi: 10.1158/0008-5472.CAN-05-2813. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

430. Durham N.M., Holoweckyj N., MacGill R.S., McGlinchey K., Leow C.C., Robbins S.H. GITR ligand fusion protein agonist enhances the tumor antigen-specific CD8 T-cell response and leads to long-lasting memory. J. Immunother. Cancer. 2017;5:47. doi: 10.1186/s40425-017-0247-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

431. Piao J., Kamimura Y., Iwai H., Cao Y., Kikuchi K., Hashiguchi M., Masunaga T., Jiang H., Tamura K., Sakaguchi S., et al. Enhancement of T-cell-mediated anti-tumour immunity via the ectopically expressed glucocorticoid-induced tumour necrosis factor receptor-related receptor ligand (GITRL) on tumours. Immunology. 2009;127:489–499. doi: 10.1111/j.1365-2567.2008.03036.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

432. Kohm A.P., Williams J.S., Miller S.D. Cutting edge: Ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J. Immunol. (Baltim. Md. 1950) 2004;172:4686–4690. doi: 10.4049/jimmunol.172.8.4686. [PubMed] [CrossRef] [Google Scholar]

433. Shimizu J., Yamazaki S., Takahashi T., Ishida Y., Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 2002;3:135–142. doi: 10.1038/ni759. [PubMed] [CrossRef] [Google Scholar]

434. Knee D.A., Hewes B., Brogdon J.L. Rationale for anti-GITR cancer immunotherapy. Eur. J. Cancer (Oxford Engl. 1990) 2016;67:1–10. doi: 10.1016/j.ejca.2016.06.028. [PubMed] [CrossRef] [Google Scholar]

435. Chen A.I., McAdam A.J., Buhlmann J.E., Scott S., Lupher M.L., Greenfield E.A., Baum P.R., Fanslow W.C., Calderhead D.M., Freeman G.J., et al. Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity. 1999;11:689–698. doi: 10.1016/S1074-7613(00)80143-0. [PubMed] [CrossRef] [Google Scholar]

436. Ishii N., Takahashi T., Soroosh P., Sugamura K. OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv. Immunol. 2010;105:63–98. doi: 10.1016/S0065-2776(10)05003-0. [PubMed] [CrossRef] [Google Scholar]

437. Murata K., Ishii N., Takano H., Miura S., Ndhlovu L.C., Nose M., Noda T., Sugamura K. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med. 2000;191:365–374. doi: 10.1084/jem.191.2.365. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

438. Karulf M., Kelly A., Weinberg A.D., Gold J.A. OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J. Immunol. (Baltim. Md. 1950) 2010;185:4856–4862. doi: 10.4049/jimmunol.1000404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

439. Linton P.J., Bautista B., Biederman E., Bradley E.S., Harbertson J., Kondrack R.M., Padrick R.C., Bradley L.M. Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J. Exp. Med. 2003;197:875–883. doi: 10.1084/jem.20021290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

440. Takeda I., Ine S., Killeen N., Ndhlovu L.C., Murata K., Satomi S., Sugamura K., Ishii N. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J. Immunol. (Baltim. Md. 1950) 2004;172:3580–3589. doi: 10.4049/jimmunol.172.6.3580. [PubMed] [CrossRef] [Google Scholar]

441. Valzasina B., Guiducci C., Dislich H., Killeen N., Weinberg A.D., Colombo M.P. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: A novel regulatory role for OX40 and its comparison with GITR. Blood. 2005;105:2845–2851. doi: 10.1182/blood-2004-07-2959. [PubMed] [CrossRef] [Google Scholar]

442. De Smedt T., Smith J., Baum P., Fanslow W., Butz E., Maliszewski C. Ox40 costimulation enhances the development of T cell responses induced by dendritic cells in vivo. J. Immunol. (Baltim. Md. 1950) 2002;168:661–670. doi: 10.4049/jimmunol.168.2.661. [PubMed] [CrossRef] [Google Scholar]

443. Flynn S., Toellner K.M., Raykundalia C., Goodall M., Lane P. CD4 T cell cytokine differentiation: The B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J. Exp. Med. 1998;188:297–304. doi: 10.1084/jem.188.2.297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

444. Higgins L.M., McDonald S.A., Whittle N., Crockett N., Shields J.G., MacDonald T.T. Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: Amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J. Immunol. (Baltim. Md. 1950) 1999;162:486–493. [PubMed] [Google Scholar]

445. Jenkins S.J., Perona-Wright G., Worsley A.G., Ishii N., MacDonald A.S. Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J. Immunol. (Baltim. Md. 1950) 2007;179:3515–3523. doi: 10.4049/jimmunol.179.6.3515. [PubMed] [CrossRef] [Google Scholar]

446. Ohshima Y., Yang L.P., Uchiyama T., Tanaka Y., Baum P., Sergerie M., Hermann P., Delespesse G. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood. 1998;92:3338–3345. doi: 10.1182/blood.V92.9.3338. [PubMed] [CrossRef] [Google Scholar]

447. Weinberg A.D., Rivera M.M., Prell R., Morris A., Ramstad T., Vetto J.T., Urba W.J., Alvord G., Bunce C., Shields J. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. (Baltim. Md. 1950) 2000;164:2160–2169. doi: 10.4049/jimmunol.164.4.2160. [PubMed] [CrossRef] [Google Scholar]

448. Rogers P.R., Song J., Gramaglia I., Killeen N., Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity. 2001;15:445–455. doi: 10.1016/S1074-7613(01)00191-1. [PubMed] [CrossRef] [Google Scholar]

449. Soroosh P., Ine S., Sugamura K., Ishii N. OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. J. Immunol. (Baltim. Md. 1950) 2006;176:5975–5987. doi: 10.4049/jimmunol.176.10.5975. [PubMed] [CrossRef] [Google Scholar]

450. Ito T., Wang Y.H., Duramad O., Hanabuchi S., Perng O.A., Gilliet M., Qin F.X., Liu Y.J. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc. Natl. Acad. Sci. USA. 2006;103:13138–13143. doi: 10.1073/pnas.0603107103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

451. Piconese S., Pittoni P., Burocchi A., Gorzanelli A., Care A., Tripodo C., Colombo M.P. A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur. J. Immunol. 2010;40:2902–2913. doi: 10.1002/eji.201040505. [PubMed] [CrossRef] [Google Scholar]

452. Vu M.D., Xiao X., Gao W., Degauque N., Chen M., Kroemer A., Killeen N., Ishii N., Li X.C. OX40 costimulation turns off Foxp3+ Tregs. Blood. 2007;110:2501–2510. doi: 10.1182/blood-2007-01-070748. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

453. Xiao X., Gong W., Demirci G., Liu W., Spoerl S., Chu X., Bishop D.K., Turka L.A., Li X.C. New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J. Immunol. (Baltim. Md. 1950) 2012;188:892–901. doi: 10.4049/jimmunol.1101373. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

454. Buchan S., Manzo T., Flutter B., Rogel A., Edwards N., Zhang L., Sivakumaran S., Ghorashian S., Carpenter B., Bennett C., et al. OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J. Immunol. (Baltim. Md. 1950) 2015;194:125–133. doi: 10.4049/jimmunol.1401644. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

455. Fu Y., Lin Q., Zhang Z., Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B. 2020;10:414–433. doi: 10.1016/j.apsb.2019.08.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

456. Redmond W.L., Weinberg A.D. Targeting OX40 and OX40L for the treatment of autoimmunity and cancer. Crit. Rev. Immunol. 2007;27:415–436. doi: 10.1615/CritRevImmunol.v27.i5.20. [PubMed] [CrossRef] [Google Scholar]

457. Coussens L.M., Zitvogel L., Palucka A.K. Neutralizing tumor-promoting chronic inflammation: A magic bullet? Science (N. Y.) 2013;339:286–291. doi: 10.1126/science.1232227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

458. Hendriks J., Xiao Y., Rossen J.W., van der Sluijs K.F., Sugamura K., Ishii N., Borst J. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J. Immunol. (Baltim. Md. 1950) 2005;175:1665–1676. doi: 10.4049/jimmunol.175.3.1665. [PubMed] [CrossRef] [Google Scholar]

459. Bourgeois C., Rocha B., Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science (N. Y.) 2002;297:2060–2063. doi: 10.1126/science.1072615. [PubMed] [CrossRef] [Google Scholar]

460. Tong A.W., Stone M.J. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther. 2003;10:1–13. doi: 10.1038/sj.cgt.7700527. [PubMed] [CrossRef] [Google Scholar]

461. Bennett S.R., Carbone F.R., Karamalis F., Miller J.F., Heath W.R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 1997;186:65–70. doi: 10.1084/jem.186.1.65. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

462. Belz G.T., Wodarz D., Diaz G., Nowak M.A., Doherty P.C. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J. Virol. 2002;76:12388–12393. doi: 10.1128/JVI.76.23.12388-12393.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

463. Cella M., Scheidegger D., Palmer-Lehmann K., Lane P., Lanzavecchia A., Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 1996;184:747–752. doi: 10.1084/jem.184.2.747. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

464. Diehl L., den Boer A.T., Schoenberger S.P., van der Voort E.I., Schumacher T.N., Melief C.J., Offringa R., Toes R.E. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat. Med. 1999;5:774–779. doi: 10.1038/10495. [PubMed] [CrossRef] [Google Scholar]

465. Kedl R.M., Jordan M., Potter T., Kappler J., Marrack P., Dow S. CD40 stimulation accelerates deletion of tumor-specific CD8(+) T cells in the absence of tumor-antigen vaccination. Proc. Natl. Acad. Sci. USA. 2001;98:10811–10816. doi: 10.1073/pnas.191371898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

466. Ahrends T., Busselaar J., Severson T.M., Babala N., de Vries E., Bovens A., Wessels L., van Leeuwen F., Borst J. CD4(+) T cell help creates memory CD8(+) T cells with innate and help-independent recall capacities. Nat. Commun. 2019;10:5531. doi: 10.1038/s41467-019-13438-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

467. Vonderheide R.H., Glennie M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:1035–1043. doi: 10.1158/1078-0432.CCR-12-2064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

468. Keller A.M., Schildknecht A., Xiao Y., van den Broek M., Borst J. Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity. 2008;29:934–946. doi: 10.1016/j.immuni.2008.10.009. [PubMed] [CrossRef] [Google Scholar]

469. Bullock T.N., Yagita H. Induction of CD70 on dendritic cells through CD40 or TLR stimulation contributes to the development of CD8+ T cell responses in the absence of CD4+ T cells. J. Immunol. (Baltim. Md. 1950) 2005;174:710–717. doi: 10.4049/jimmunol.174.2.710. [PubMed] [CrossRef] [Google Scholar]

470. Sanchez P.J., McWilliams J.A., Haluszczak C., Yagita H., Kedl R.M. Combined TLR/CD40 stimulation mediates potent cellular immunity by regulating dendritic cell expression of CD70 in vivo. J. Immunol. (Baltim. Md. 1950) 2007;178:1564–1572. doi: 10.4049/jimmunol.178.3.1564. [PubMed] [CrossRef] [Google Scholar]

471. Feau S., Garcia Z., Arens R., Yagita H., Borst J., Schoenberger S.P. The CD4(+) T-cell help signal is transmitted from APC to CD8(+) T-cells via CD27-CD70 interactions. Nat. Commun. 2012;3:948. doi: 10.1038/ncomms1948. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

472. French R.R., Taraban V.Y., Crowther G.R., Rowley T.F., Gray J.C., Johnson P.W., Tutt A.L., Al-Shamkhani A., Glennie M.J. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood. 2007;109:4810–4815. doi: 10.1182/blood-2006-11-057216. [PubMed] [CrossRef] [Google Scholar]

473. Arens R., Schepers K., Nolte M.A., van Oosterwijk M.F., van Lier R.A., Schumacher T.N., van Oers M.H. Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J. Exp. Med. 2004;199:1595–1605. doi: 10.1084/jem.20031111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

474. Hendriks J., Gravestein L.A., Tesselaar K., van Lier R.A., Schumacher T.N., Borst J. CD27 is required for generation and long-term maintenance of T cell immunity. Nat. Immunol. 2000;1:433–440. doi: 10.1038/80877. [PubMed] [CrossRef] [Google Scholar]

475. Kuka M., Munitic I., Giardino Torchia M.L., Ashwell J.D. CD70 is downregulated by interaction with CD27. J. Immunol. (Baltim. Md. 1950) 2013;191:2282–2289. doi: 10.4049/jimmunol.1300868. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

476. Sanchez P.J., Kedl R.M. An alternative signal 3: CD8(+) T cell memory independent of IL-12 and type I IFN is dependent on CD27/OX40 signaling. Vaccine. 2012;30:1154–1161. doi: 10.1016/j.vaccine.2011.12.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

477. Soares H., Waechter H., Glaichenhaus N., Mougneau E., Yagita H., Mizenina O., Dudziak D., Nussenzweig M.C., Steinman R.M. A subset of dendritic cells induces CD4+ T cells to produce IFN-gamma by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 2007;204:1095–1106. doi: 10.1084/jem.20070176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

478. Tesselaar K., Arens R., van Schijndel G.M., Baars P.A., van der Valk M.A., Borst J., van Oers M.H., van Lier R.A. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat. Immunol. 2003;4:49–54. doi: 10.1038/ni869. [PubMed] [CrossRef] [Google Scholar]

479. Van de Ven K., Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: Rationale and potential. Immunotherapy. 2015;7:655–667. doi: 10.2217/imt.15.32. [PubMed] [CrossRef] [Google Scholar]

480. Yang Z.Z., Grote D.M., Xiu B., Ziesmer S.C., Price-Troska T.L., Hodge L.S., Yates D.M., Novak A.J., Ansell S.M. TGF-beta upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia. 2014;28:1872–1884. doi: 10.1038/leu.2014.84. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

481. Buchan S.L., Fallatah M., Thirdborough S.M., Taraban V.Y., Rogel A., Thomas L.J., Penfold C.A., He L.Z., Curran M.A., Keler T., et al. PD-1 Blockade and CD27 Stimulation Activate Distinct Transcriptional Programs That Synergize for CD8(+) T-Cell-Driven Antitumor Immunity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:2383–2394. doi: 10.1158/1078-0432.CCR-17-3057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

482. Agata Y., Kawasaki A., Nishimura H., Ishida Y., Tsubata T., Yagita H., Honjo T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 1996;8:765–772. doi: 10.1093/intimm/8.5.765. [PubMed] [CrossRef] [Google Scholar]

483. Liang S.C., Latchman Y.E., Buhlmann J.E., Tomczak M.F., Horwitz B.H., Freeman G.J., Sharpe A.H. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 2003;33:2706–2716. doi: 10.1002/eji.200324228. [PubMed] [CrossRef] [Google Scholar]

484. Sharpe A.H., Pauken K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2018;18:153–167. doi: 10.1038/nri.2017.108. [PubMed] [CrossRef] [Google Scholar]

485. Hui E., Cheung J., Zhu J., Su X., Taylor M.J., Wallweber H.A., Sasmal D.K., Huang J., Kim J.M., Mellman I., et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science (N. Y.) 2017;355:1428–1433. doi: 10.1126/science.aaf1292. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

486. Parry R.V., Chemnitz J.M., Frauwirth K.A., Lanfranco A.R., Braunstein I., Kobayashi S.V., Linsley P.S., Thompson C.B., Riley J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Boil. 2005;25:9543–9553. doi: 10.1128/MCB.25.21.9543-9553.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

487. Yokosuka T., Takamatsu M., Kobayashi-Imanishi W., Hashimoto-Tane A., Azuma M., Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 2012;209:1201–1217. doi: 10.1084/jem.20112741. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

488. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.J., Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–687. doi: 10.1038/nature04444. [PubMed] [CrossRef] [Google Scholar]

489. Crawford A., Angelosanto J.M., Kao C., Doering T.A., Odorizzi P.M., Barnett B.E., Wherry E.J. Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity. 2014;40:289–302. doi: 10.1016/j.immuni.2014.01.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

490. Pauken K.E., Wherry E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36:265–276. doi: 10.1016/j.it.2015.02.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

491. Kamphorst A.O., Wieland A., Nasti T., Yang S., Zhang R., Barber D.L., Konieczny B.T., Daugherty C.Z., Koenig L., Yu K., et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science (N. Y.) 2017;355:1423–1427. doi: 10.1126/science.aaf0683. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

492. Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., Chen Q., Gindin M., Gubin M.M., van der Windt G.J., et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015;162:1229–1241. doi: 10.1016/j.cell.2015.08.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

493. O’Sullivan D., Pearce E.L. Targeting T cell metabolism for therapy. Trends Immunol. 2015;36:71–80. doi: 10.1016/j.it.2014.12.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

494. Patsoukis N., Bardhan K., Chatterjee P., Sari D., Liu B., Bell L.N., Karoly E.D., Freeman G.J., Petkova V., Seth P., et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 2015;6:6692. doi: 10.1038/ncomms7692. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

495. Taylor A., Harker J.A., Chanthong K., Stevenson P.G., Zuniga E.I., Rudd C.E. Glycogen Synthase Kinase 3 Inactivation Drives T-bet-Mediated Downregulation of Co-receptor PD-1 to Enhance CD8(+) Cytolytic T Cell Responses. Immunity. 2016;44:274–286. doi: 10.1016/j.immuni.2016.01.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

496. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999;5:1365–1369. doi: 10.1038/70932. [PubMed] [CrossRef] [Google Scholar]

497. Freeman G.J., Long A.J., Iwai Y., Bourque K., Chernova T., Nishimura H., Fitz L.J., Malenkovich N., Okazaki T., Byrne M.C., et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000;192:1027–1034. doi: 10.1084/jem.192.7.1027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

498. Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001;2:261–268. doi: 10.1038/85330. [PubMed] [CrossRef] [Google Scholar]

499. Tseng S.Y., Otsuji M., Gorski K., Huang X., Slansky J.E., Pai S.I., Shalabi A., Shin T., Pardoll D.M., Tsuchiya H. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 2001;193:839–846. doi: 10.1084/jem.193.7.839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

500. Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA. 2002;99:12293–12297. doi: 10.1073/pnas.192461099. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

501. Juneja V.R., McGuire K.A., Manguso R.T., LaFleur M.W., Collins N., Haining W.N., Freeman G.J., Sharpe A.H. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J. Exp. Med. 2017;214:895–904. doi: 10.1084/jem.20160801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

502. Eppihimer M.J., Gunn J., Freeman G.J., Greenfield E.A., Chernova T., Erickson J., Leonard J.P. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation (New York 1994) 2002;9:133–145. doi: 10.1080/713774061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

503. Askenase M.H., Han S.J., Byrd A.L., Morais da Fonseca D., Bouladoux N., Wilhelm C., Konkel J.E., Hand T.W., Lacerda-Queiroz N., Su X.Z., et al. Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection. Immunity. 2015;42:1130–1142. doi: 10.1016/j.immuni.2015.05.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

504. Dong H., Strome S.E., Salomao D.R., Tamura H., Hirano F., Flies D.B., Roche P.C., Lu J., Zhu G., Tamada K., et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002;8:793–800. doi: 10.1038/nm730. [PubMed] [CrossRef] [Google Scholar]

505. Berger R., Rotem-Yehudar R., Slama G., Landes S., Kneller A., Leiba M., Koren-Michowitz M., Shimoni A., Nagler A. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008;14:3044–3051. doi: 10.1158/1078-0432.CCR-07-4079. [PubMed] [CrossRef] [Google Scholar]

506. Brahmer J.R., Tykodi S.S., Chow L.Q., Hwu W.J., Topalian S.L., Hwu P., Drake C.G., Camacho L.H., Kauh J., Odunsi K., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012;366:2455–2465. doi: 10.1056/NEJMoa1200694. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

507. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012;366:2443–2454. doi: 10.1056/NEJMoa1200690. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

508. Wolchok J.D., Kluger H., Callahan M.K., Postow M.A., Rizvi N.A., Lesokhin A.M., Segal N.H., Ariyan C.E., Gordon R.A., Reed K., et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013;369:122–133. doi: 10.1056/NEJMoa1302369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

509. Butte M.J., Keir M.E., Phamduy T.B., Sharpe A.H., Freeman G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–122. doi: 10.1016/j.immuni.2007.05.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

510. Francisco L.M., Salinas V.H., Brown K.E., Vanguri V.K., Freeman G.J., Kuchroo V.K., Sharpe A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009;206:3015–3029. doi: 10.1084/jem.20090847. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

511. Wang W., Lau R., Yu D., Zhu W., Korman A., Weber J. PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells. Int. Immunol. 2009;21:1065–1077. doi: 10.1093/intimm/dxp072. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

512. Trefny M.P., Kaiser M., Stanczak M.A., Herzig P., Savic S., Wiese M., Lardinois D., Laubli H., Uhlenbrock F., Zippelius A. PD-1(+) natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunol. Immunother. 2020 doi: 10.1007/s00262-020-02558-z. [PubMed] [CrossRef] [Google Scholar]

513. Nguyen L.T., Ohashi P.S. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nat. Rev. Immunol. 2015;15:45–56. doi: 10.1038/nri3790. [PubMed] [CrossRef] [Google Scholar]

514. Kuipers H., Muskens F., Willart M., Hijdra D., van Assema F.B., Coyle A.J., Hoogsteden H.C., Lambrecht B.N. Contribution of the PD-1 ligands/PD-1 signaling pathway to dendritic cell-mediated CD4+ T cell activation. Eur. J. Immunol. 2006;36:2472–2482. doi: 10.1002/eji.200635978. [PubMed] [CrossRef] [Google Scholar]

515. Diskin B., Adam S., Cassini M.F., Sanchez G., Liria M., Aykut B., Buttar C., Li E., Sundberg B., Salas R.D., et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol. 2020;21:442–454. doi: 10.1038/s41590-020-0620-x. [PubMed] [CrossRef] [Google Scholar]

516. Lines J.L., Pantazi E., Mak J., Sempere L.F., Wang L., O’Connell S., Ceeraz S., Suriawinata A.A., Yan S., Ernstoff M.S., et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74:1924–1932. doi: 10.1158/0008-5472.CAN-13-1504. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

517. Rosenbaum S.R., Knecht M., Mollaee M., Zhong Z., Erkes D.A., McCue P.A., Chervoneva I., Berger A.C., Lo J.A., Fisher D.E., et al. FOXD3 Regulates VISTA Expression in Melanoma. Cell Rep. 2020;30:510–524 e516. doi: 10.1016/j.celrep.2019.12.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

518. Yoon K.W., Byun S., Kwon E., Hwang S.Y., Chu K., Hiraki M., Jo S.H., Weins A., Hakroush S., Cebulla A., et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science (N. Y.) 2015;349:1261669. doi: 10.1126/science.1261669. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

519. Nowak E.C., Lines J.L., Varn F.S., Deng J., Sarde A., Mabaera R., Kuta A., Le Mercier I., Cheng C., Noelle R.J. Immunoregulatory functions of VISTA. Immunol. Rev. 2017;276:66–79. doi: 10.1111/imr.12525. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

520. Liu J., Yuan Y., Chen W., Putra J., Suriawinata A.A., Schenk A.D., Miller H.E., Guleria I., Barth R.J., Huang Y.H., et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc. Natl. Acad. Sci. USA. 2015;112:6682–6687. doi: 10.1073/pnas.1420370112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

521. Wang L., Rubinstein R., Lines J.L., Wasiuk A., Ahonen C., Guo Y., Lu L.F., Gondek D., Wang Y., Fava R.A., et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J. Exp. Med. 2011;208:577–592. doi: 10.1084/jem.20100619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

522. Flies D.B., Han X., Higuchi T., Zheng L., Sun J., Ye J.J., Chen L. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J. Clin. Investig. 2014;124:1966–1975. doi: 10.1172/JCI74589. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

523. Li N., Xu W., Yuan Y., Ayithan N., Imai Y., Wu X., Miller H., Olson M., Feng Y., Huang Y.H., et al. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci, Rep. 2017;7:1485. doi: 10.1038/s41598-017-01411-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

524. Wang L., Le Mercier I., Putra J., Chen W., Liu J., Schenk A.D., Nowak E.C., Suriawinata A.A., Li J., Noelle R.J. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc. Natl. Acad. Sci. USA. 2014;111:14846–14851. doi: 10.1073/pnas.1407447111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

525. Kondo Y., Ohno T., Nishii N., Harada K., Yagita H., Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol. 2016;57:54–60. doi: 10.1016/j.oraloncology.2016.04.005. [PubMed] [CrossRef] [Google Scholar]

526. Le Mercier I., Chen W., Lines J.L., Day M., Li J., Sergent P., Noelle R.J., Wang L. VISTA Regulates the Development of Protective Antitumor Immunity. Cancer Res. 2014;74:1933–1944. doi: 10.1158/0008-5472.CAN-13-1506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

527. Gao J., Ward J.F., Pettaway C.A., Shi L.Z., Subudhi S.K., Vence L.M., Zhao H., Chen J., Chen H., Efstathiou E., et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 2017;23:551–555. doi: 10.1038/nm.4308. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

528. Chen L., Flies D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013;13:227–242. doi: 10.1038/nri3405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

529. Sharma P., Allison J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 2015;161:205–214. doi: 10.1016/j.cell.2015.03.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

530. Sharma P., Allison J.P. The future of immune checkpoint therapy. Science (N. Y.) 2015;348:56–61. doi: 10.1126/science.aaa8172. [PubMed] [CrossRef] [Google Scholar]

531. Coombes J.L., Siddiqui K.R., Arancibia-Carcamo C.V., Hall J., Sun C.M., Belkaid Y., Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 2007;204:1757–1764. doi: 10.1084/jem.20070590. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

532. Sun C.M., Hall J.A., Blank R.B., Bouladoux N., Oukka M., Mora J.R., Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007;204:1775–1785. doi: 10.1084/jem.20070602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

533. Alexandre Y.O., Ghilas S., Sanchez C., Le Bon A., Crozat K., Dalod M. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. J. Exp. Med. 2016;213:75–92. doi: 10.1084/jem.20142350. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

534. Draheim M., Wlodarczyk M.F., Crozat K., Saliou J.M., Alayi T.D., Tomavo S., Hassan A., Salvioni A., Demarta-Gatsi C., Sidney J., et al. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells. EMBO Mol. Med. 2017;9:1605–1621. doi: 10.15252/emmm.201708123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

535. Farrand K.J., Dickgreber N., Stoitzner P., Ronchese F., Petersen T.R., Hermans I.F. Langerin+ CD8alpha+ dendritic cells are critical for cross-priming and IL-12 production in response to systemic antigens. J. Immunol. (Baltim. Md. 1950) 2009;183:7732–7742. doi: 10.4049/jimmunol.0902707. [PubMed] [CrossRef] [Google Scholar]

536. Henry C.J., Ornelles D.A., Mitchell L.M., Brzoza-Lewis K.L., Hiltbold E.M. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J. Immunol. (Baltim. Md. 1950) 2008;181:8576–8584. doi: 10.4049/jimmunol.181.12.8576. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

537. Liu C.H., Fan Y.T., Dias A., Esper L., Corn R.A., Bafica A., Machado F.S., Aliberti J. Cutting edge: Dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J. Immunol. (Baltim. Md. 1950) 2006;177:31–35. doi: 10.4049/jimmunol.177.1.31. [PubMed] [CrossRef] [Google Scholar]

538. Maldonado-Lopez R., De Smedt T., Michel P., Godfroid J., Pajak B., Heirman C., Thielemans K., Leo O., Urbain J., Moser M. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 1999;189:587–592. doi: 10.1084/jem.189.3.587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

539. Martinez-Lopez M., Iborra S., Conde-Garrosa R., Sancho D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th2 immunity against Leishmania major infection in mice. Eur. J. Immunol. 2015;45:119–129. doi: 10.1002/eji.201444651. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

540. Mashayekhi M., Sandau M.M., Dunay I.R., Frickel E.M., Khan A., Goldszmid R.S., Sher A., Ploegh H.L., Murphy T.L., Sibley L.D., et al. CD8alpha(+) dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity. 2011;35:249–259. doi: 10.1016/j.immuni.2011.08.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

541. Persky M.E., Murphy K.M., Farrar J.D. IL-12, but not IFN-alpha, promotes STAT4 activation and Th2 development in murine CD4+ T cells expressing a chimeric murine/human Stat2 gene. J. Immunol. (Baltim. Md. 1950) 2005;174:294–301. doi: 10.4049/jimmunol.174.1.294. [PubMed] [CrossRef] [Google Scholar]

542. Pulendran B., Smith J.L., Caspary G., Brasel K., Pettit D., Maraskovsky E., Maliszewski C.R. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA. 1999;96:1036–1041. doi: 10.1073/pnas.96.3.1036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

543. Reis e Sousa C., Hieny S., Scharton-Kersten T., Jankovic D., Charest H., Germain R.N., Sher A. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 1997;186:1819–1829. doi: 10.1084/jem.186.11.1819. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

544. Kretschmer K., Apostolou I., Hawiger D., Khazaie K., Nussenzweig M.C., von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 2005;6:1219–1227. doi: 10.1038/ni1265. [PubMed] [CrossRef] [Google Scholar]

545. Zhang J.A., Lu Y.B., Wang W.D., Liu G.B., Chen C., Shen L., Luo H.L., Xu H., Peng Y., Luo H., et al. BTLA-Expressing Dendritic Cells in Patients With Tuberculosis Exhibit Reduced Production of IL-12/IFN-alpha and Increased Production of IL-4 and TGF-beta, Favoring Th2 and Foxp3(+) Treg Polarization. Front. Immunol. 2020;11:518. doi: 10.3389/fimmu.2020.00518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

546. Joffre O.P., Segura E., Savina A., Amigorena S. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 2012;12:557–569. doi: 10.1038/nri3254. [PubMed] [CrossRef] [Google Scholar]

547. Luckashenak N., Schroeder S., Endt K., Schmidt D., Mahnke K., Bachmann M.F., Marconi P., Deeg C.A., Brocker T. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity. 2008;28:521–532. doi: 10.1016/j.immuni.2008.02.018. [PubMed] [CrossRef] [Google Scholar]

548. Nair-Gupta P., Blander J.M. An updated view of the intracellular mechanisms regulating cross-presentation. Front. Immunol. 2013;4:401. doi: 10.3389/fimmu.2013.00401. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

549. Dillon S., Agrawal A., Van Dyke T., Landreth G., McCauley L., Koh A., Maliszewski C., Akira S., Pulendran B. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. (Baltim. Md. 1950) 2004;172:4733–4743. doi: 10.4049/jimmunol.172.8.4733. [PubMed] [CrossRef] [Google Scholar]

550. Kitajima M., Ziegler S.F. Cutting edge: Identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J. Immunol. (Baltim. Md. 1950) 2013;191:4903–4907. doi: 10.4049/jimmunol.1302175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

551. Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238. doi: 10.1038/nature04753. [PubMed] [CrossRef] [Google Scholar]

552. Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., Cua D.J., Littman D.R. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–1133. doi: 10.1016/j.cell.2006.07.035. [PubMed] [CrossRef] [Google Scholar]

553. Mangan P.R., Harrington L.E., O’Quinn D.B., Helms W.S., Bullard D.C., Elson C.O., Hatton R.D., Wahl S.M., Schoeb T.R., Weaver C.T. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441:231–234. doi: 10.1038/nature04754. [PubMed] [CrossRef] [Google Scholar]

554. Nurieva R., Yang X.O., Martinez G., Zhang Y., Panopoulos A.D., Ma L., Schluns K., Tian Q., Watowich S.S., Jetten A.M., et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448:480–483. doi: 10.1038/nature05969. [PubMed] [CrossRef] [Google Scholar]

555. Veldhoen M., Hocking R.J., Atkins C.J., Locksley R.M., Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–189. doi: 10.1016/j.immuni.2006.01.001. [PubMed] [CrossRef] [Google Scholar]

556. Zheng Y., Danilenko D.M., Valdez P., Kasman I., Eastham-Anderson J., Wu J., Ouyang W. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445:648–651. doi: 10.1038/nature05505. [PubMed] [CrossRef] [Google Scholar]

557. Zhou L., Ivanov I.I., Spolski R., Min R., Shenderov K., Egawa T., Levy D.E., Leonard W.J., Littman D.R. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 2007;8:967–974. doi: 10.1038/ni1488. [PubMed] [CrossRef] [Google Scholar]

558. Korn T., Bettelli E., Gao W., Awasthi A., Jager A., Strom T.B., Oukka M., Kuchroo V.K. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature. 2007;448:484–487. doi: 10.1038/nature05970. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

559. Korn T., Mitsdoerffer M., Croxford A.L., Awasthi A., Dardalhon V.A., Galileos G., Vollmar P., Stritesky G.L., Kaplan M.H., Waisman A., et al. IL-6 controls Th27 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA. 2008;105:18460–18465. doi: 10.1073/pnas.0809850105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

560. Briseno C.G., Satpathy A.T., Davidson J.T.t., Ferris S.T., Durai V., Bagadia P., O’Connor K.W., Theisen D.J., Murphy T.L., Murphy K.M. Notch2-dependent DC2s mediate splenic germinal center responses. Proc. Natl. Acad. Sci. USA. 2018;115:10726–10731. doi: 10.1073/pnas.1809925115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

561. Murphy K.M., Reiner S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2002;2:933–944. doi: 10.1038/nri954. [PubMed] [CrossRef] [Google Scholar]

562. Paul W.E., Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat. Rev. Immunol. 2010;10:225–235. doi: 10.1038/nri2735. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

563. Proietto A.I., van Dommelen S., Zhou P., Rizzitelli A., D’Amico A., Steptoe R.J., Naik S.H., Lahoud M.H., Liu Y., Zheng P., et al. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl. Acad. Sci. USA. 2008;105:19869–19874. doi: 10.1073/pnas.0810268105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

564. Cohn L., Chatterjee B., Esselborn F., Smed-Sorensen A., Nakamura N., Chalouni C., Lee B.C., Vandlen R., Keler T., Lauer P., et al. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J. Exp. Med. 2013;210:1049–1063. doi: 10.1084/jem.20121251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

565. Dalod M., Hamilton T., Salomon R., Salazar-Mather T.P., Henry S.C., Hamilton J.D., Biron C.A. Dendritic cell responses to early murine cytomegalovirus infection: Subset functional specialization and differential regulation by interferon alpha/beta. J. Exp. Med. 2003;197:885–898. doi: 10.1084/jem.20021522. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

566. Manetti R., Parronchi P., Giudizi M.G., Piccinni M.P., Maggi E., Trinchieri G., Romagnani S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th2)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 1993;177:1199–1204. doi: 10.1084/jem.177.4.1199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

567. Mittag D., Proietto A.I., Loudovaris T., Mannering S.I., Vremec D., Shortman K., Wu L., Harrison L.C. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. (Baltim. Md. 1950) 2011;186:6207–6217. doi: 10.4049/jimmunol.1002632. [PubMed] [CrossRef] [Google Scholar]

568. Napolitani G., Rinaldi A., Bertoni F., Sallusto F., Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 2005;6:769–776. doi: 10.1038/ni1223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

569. Nizzoli G., Krietsch J., Weick A., Steinfelder S., Facciotti F., Gruarin P., Bianco A., Steckel B., Moro M., Crosti M., et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122:932–942. doi: 10.1182/blood-2013-04-495424. [PubMed] [CrossRef] [Google Scholar]

570. Piccioli D., Tavarini S., Borgogni E., Steri V., Nuti S., Sammicheli C., Bardelli M., Montagna D., Locatelli F., Wack A. Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood. 2007;109:5371–5379. doi: 10.1182/blood-2006-08-038422. [PubMed] [CrossRef] [Google Scholar]

571. Poulin L.F., Salio M., Griessinger E., Anjos-Afonso F., Craciun L., Chen J.L., Keller A.M., Joffre O., Zelenay S., Nye E., et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 2010;207:1261–1271. doi: 10.1084/jem.20092618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

572. Segura E., Durand M., Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 2013;210:1035–1047. doi: 10.1084/jem.20121103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

573. Lauterbach H., Bathke B., Gilles S., Traidl-Hoffmann C., Luber C.A., Fejer G., Freudenberg M.A., Davey G.M., Vremec D., Kallies A., et al. Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J. Exp. Med. 2010;207:2703–2717. doi: 10.1084/jem.20092720. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

574. Olsen I., Sollid L.M. Pitfalls in determining the cytokine profile of human T cells. J. Immunol. Methods. 2013;390:106–112. doi: 10.1016/j.jim.2013.01.015. [PubMed] [CrossRef] [Google Scholar]

575. Hou B., Benson A., Kuzmich L., DeFranco A.L., Yarovinsky F. Critical coordination of innate immune defense against Toxoplasma gondii by dendritic cells responding via their Toll-like receptors. Proc. Natl. Acad. Sci. USA. 2011;108:278–283. doi: 10.1073/pnas.1011549108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

576. Bottcher J.P., Bonavita E., Chakravarty P., Blees H., Cabeza-Cabrerizo M., Sammicheli S., Rogers N.C., Sahai E., Zelenay S., Reis E.S.C. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022–1037.e1014. doi: 10.1016/j.cell.2018.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

577. Bagadia P., Huang X., Liu T.T., Murphy K.M. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu. Rev. Cell Dev. Boil. 2019;35:381–406. doi: 10.1146/annurev-cellbio-100818-125403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

578. Robinette M.L., Colonna M. Immune modules shared by innate lymphoid cells and T cells. J. Allergy Clin. Immunol. 2016;138:1243–1251. doi: 10.1016/j.jaci.2016.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

579. Diebold S.S., Montoya M., Unger H., Alexopoulou L., Roy P., Haswell L.E., Al-Shamkhani A., Flavell R., Borrow P., Reis e Sousa C. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature. 2003;424:324–328. doi: 10.1038/nature01783. [PubMed] [CrossRef] [Google Scholar]

580. Kato H., Sato S., Yoneyama M., Yamamoto M., Uematsu S., Matsui K., Tsujimura T., Takeda K., Fujita T., Takeuchi O., et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 2005;23:19–28. doi: 10.1016/j.immuni.2005.04.010. [PubMed] [CrossRef] [Google Scholar]

581. Salazar F., Awuah D., Negm O.H., Shakib F., Ghaemmaghami A.M. The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs. Sci. Rep. 2017;7:43337. doi: 10.1038/srep43337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

582. Tailor P., Tamura T., Ozato K. IRF family proteins and type I interferon induction in dendritic cells. Cell Res. 2006;16:134–140. doi: 10.1038/sj.cr.7310018. [PubMed] [CrossRef] [Google Scholar]

583. Tailor P., Tamura T., Kong H.J., Kubota T., Kubota M., Borghi P., Gabriele L., Ozato K. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity. 2007;27:228–239. doi: 10.1016/j.immuni.2007.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

584. Fuertes M.B., Kacha A.K., Kline J., Woo S.R., Kranz D.M., Murphy K.M., Gajewski T.F. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 2011;208:2005–2016. doi: 10.1084/jem.20101159. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

585. Ito T., Amakawa R., Inaba M., Ikehara S., Inaba K., Fukuhara S. Differential regulation of human blood dendritic cell subsets by IFNs. J. Immunol. (Baltim. Md. 1950) 2001;166:2961–2969. doi: 10.4049/jimmunol.166.5.2961. [PubMed] [CrossRef] [Google Scholar]

586. Le Bon A., Etchart N., Rossmann C., Ashton M., Hou S., Gewert D., Borrow P., Tough D.F. Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat. Immunol. 2003;4:1009–1015. doi: 10.1038/ni978. [PubMed] [CrossRef] [Google Scholar]

587. Lorenzi S., Mattei F., Sistigu A., Bracci L., Spadaro F., Sanchez M., Spada M., Belardelli F., Gabriele L., Schiavoni G. Type I IFNs control antigen retention and survival of CD8alpha(+) dendritic cells after uptake of tumor apoptotic cells leading to cross-priming. J. Immunol. (Baltim. Md. 1950) 2011;186:5142–5150. doi: 10.4049/jimmunol.1004163. [PubMed] [CrossRef] [Google Scholar]

588. Parlato S., Romagnoli G., Spadaro F., Canini I., Sirabella P., Borghi P., Ramoni C., Filesi I., Biocca S., Gabriele L., et al. LOX-1 as a natural IFN-alpha-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells. Blood. 2010;115:1554–1563. doi: 10.1182/blood-2009-07-234468. [PubMed] [CrossRef] [Google Scholar]

589. Schiavoni G., Sistigu A., Valentini M., Mattei F., Sestili P., Spadaro F., Sanchez M., Lorenzi S., D’Urso M.T., Belardelli F., et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011;71:768–778. doi: 10.1158/0008-5472.CAN-10-2788. [PubMed] [CrossRef] [Google Scholar]

590. Spadaro F., Lapenta C., Donati S., Abalsamo L., Barnaba V., Belardelli F., Santini S.M., Ferrantini M. IFN-alpha enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing. Blood. 2012;119:1407–1417. doi: 10.1182/blood-2011-06-363564. [PubMed] [CrossRef] [Google Scholar]

591. Diamond M.S., Kinder M., Matsushita H., Mashayekhi M., Dunn G.P., Archambault J.M., Lee H., Arthur C.D., White J.M., Kalinke U., et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 2011;208:1989–2003. doi: 10.1084/jem.20101158. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

592. Jacquelot N., Yamazaki T., Roberti M.P., Duong C.P.M., Andrews M.C., Verlingue L., Ferrere G., Becharef S., Vetizou M., Daillere R., et al. Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res. 2019;29:846–861. doi: 10.1038/s41422-019-0224-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

593. Hubert M., Gobbini E., Couillault C., Manh T.V., Doffin A.C., Berthet J., Rodriguez C., Ollion V., Kielbassa J., Sajous C., et al. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci. Immunol. 2020;5:eaav3942. doi: 10.1126/sciimmunol.aav3942. [PubMed] [CrossRef] [Google Scholar]

594. Guilliams M., Crozat K., Henri S., Tamoutounour S., Grenot P., Devilard E., de Bovis B., Alexopoulou L., Dalod M., Malissen B. Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells. Blood. 2010;115:1958–1968. doi: 10.1182/blood-2009-09-245274. [PubMed] [CrossRef] [Google Scholar]

595. Vitali C., Mingozzi F., Broggi A., Barresi S., Zolezzi F., Bayry J., Raimondi G., Zanoni I., Granucci F. Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood. 2012;120:1237–1245. doi: 10.1182/blood-2011-09-379776. [PubMed] [CrossRef] [Google Scholar]

596. Fallarino F., Grohmann U., Hwang K.W., Orabona C., Vacca C., Bianchi R., Belladonna M.L., Fioretti M.C., Alegre M.L., Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 2003;4:1206–1212. doi: 10.1038/ni1003. [PubMed] [CrossRef] [Google Scholar]

597. Orabona C., Pallotta M.T., Volpi C., Fallarino F., Vacca C., Bianchi R., Belladonna M.L., Fioretti M.C., Grohmann U., Puccetti P. SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proc. Natl. Acad. Sci. USA. 2008;105:20828–20833. doi: 10.1073/pnas.0810278105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

598. Orabona C., Tomasello E., Fallarino F., Bianchi R., Volpi C., Bellocchio S., Romani L., Fioretti M.C., Vivier E., Puccetti P., et al. Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. Eur. J. Immunol. 2005;35:3111–3118. doi: 10.1002/eji.200535289. [PubMed] [CrossRef] [Google Scholar]

599. Belladonna M.L., Volpi C., Bianchi R., Vacca C., Orabona C., Pallotta M.T., Boon L., Gizzi S., Fioretti M.C., Grohmann U., et al. Cutting edge: Autocrine TGF-beta sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. (Baltim. Md. 1950) 2008;181:5194–5198. doi: 10.4049/jimmunol.181.8.5194. [PubMed] [CrossRef] [Google Scholar]

600. Banzola I., Mengus C., Wyler S., Hudolin T., Manzella G., Chiarugi A., Boldorini R., Sais G., Schmidli T.S., Chiffi G., et al. Expression of Indoleamine 2,3-Dioxygenase Induced by IFN-γ and TNF-α as Potential Biomarker of Prostate Cancer Progression. Front. Immunol. 2018;9:1051. doi: 10.3389/fimmu.2018.01051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

601. Fox J.M., Crabtree J.M., Sage L.K., Tompkins S.M., Tripp R.A. Interferon Lambda Upregulates IDO1 Expression in Respiratory Epithelial Cells After Influenza Virus Infection. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2015;35:554–562. doi: 10.1089/jir.2014.0052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

602. Guillemin G.J., Kerr S.J., Pemberton L.A., Smith D.G., Smythe G.A., Armati P.J., Brew B.J. IFN-beta1b induces kynurenine pathway metabolism in human macrophages: Potential implications for multiple sclerosis treatment. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2001;21:1097–1101. doi: 10.1089/107999001317205231. [PubMed] [CrossRef] [Google Scholar]

603. Munn D.H., Mellor A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016;37:193–207. doi: 10.1016/j.it.2016.01.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

604. O’Connor J.C., Andre C., Wang Y., Lawson M.A., Szegedi S.S., Lestage J., Castanon N., Kelley K.W., Dantzer R. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci. 2009;29:4200–4209. doi: 10.1523/JNEUROSCI.5032-08.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

605. Harden J.L., Egilmez N.K. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol. Investig. 2012;41:738–764. doi: 10.3109/08820139.2012.676122. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

606. Mellor A.L., Munn D.H. IDO expression by dendritic cells: Tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004;4:762–774. doi: 10.1038/nri1457. [PubMed] [CrossRef] [Google Scholar]

607. Munn D.H., Zhou M., Attwood J.T., Bondarev I., Conway S.J., Marshall B., Brown C., Mellor A.L. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science (N. Y.) 1998;281:1191–1193. doi: 10.1126/science.281.5380.1191. [PubMed] [CrossRef] [Google Scholar]

608. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] [Google Scholar]

609. Liu Y., Cao X. Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell. 2016;30:668–681. doi: 10.1016/j.ccell.2016.09.011. [PubMed] [CrossRef] [Google Scholar]

610. Roberti M.P., Yonekura S., Duong C.P.M., Picard M., Ferrere G., Tidjani Alou M., Rauber C., Iebba V., Lehmann C.H.K., Amon L., et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat. Med. 2020 doi: 10.1038/s41591-020-0882-8. [PubMed] [CrossRef] [Google Scholar]

611. Salmon H., Remark R., Gnjatic S., Merad M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer. 2019;19:215–227. doi: 10.1038/s41568-019-0125-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

612. Spranger S., Gajewski T.F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer. 2018;18:139–147. doi: 10.1038/nrc.2017.117. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

613. Broz M.L., Binnewies M., Boldajipour B., Nelson A.E., Pollack J.L., Erle D.J., Barczak A., Rosenblum M.D., Daud A., Barber D.L., et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26:638–652. doi: 10.1016/j.ccell.2014.09.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

614. Davidson S., Efremova M., Riedel A., Mahata B., Pramanik J., Huuhtanen J., Kar G., Vento-Tormo R., Hagai T., Chen X., et al. Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth. Cell Rep. 2020;31:107628. doi: 10.1016/j.celrep.2020.107628. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

615. Galon J., Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019;18:197–218. doi: 10.1038/s41573-018-0007-y. [PubMed] [CrossRef] [Google Scholar]

616. Roberts E.W., Broz M.L., Binnewies M., Headley M.B., Nelson A.E., Wolf D.M., Kaisho T., Bogunovic D., Bhardwaj N., Krummel M.F. Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell. 2016;30:324–336. doi: 10.1016/j.ccell.2016.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

617. Salmon H., Idoyaga J., Rahman A., Leboeuf M., Remark R., Jordan S., Casanova-Acebes M., Khudoynazarova M., Agudo J., Tung N., et al. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition. Immunity. 2016;44:924–938. doi: 10.1016/j.immuni.2016.03.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

618. Sanchez-Paulete A.R., Cueto F.J., Martinez-Lopez M., Labiano S., Morales-Kastresana A., Rodriguez-Ruiz M.E., Jure-Kunkel M., Azpilikueta A., Aznar M.A., Quetglas J.I., et al. Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells. Cancer Discov. 2016;6:71–79. doi: 10.1158/2159-8290.CD-15-0510. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

619. Spranger S., Dai D., Horton B., Gajewski T.F. Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell. 2017;31:711–723 e714. doi: 10.1016/j.ccell.2017.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

620. Ruffell B., Chang-Strachan D., Chan V., Rosenbusch A., Ho C.M., Pryer N., Daniel D., Hwang E.S., Rugo H.S., Coussens L.M. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26:623–637. doi: 10.1016/j.ccell.2014.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

621. Binnewies M., Mujal A.M., Pollack J.L., Combes A.J., Hardison E.A., Barry K.C., Tsui J., Ruhland M.K., Kersten K., Abushawish M.A., et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4(+) T Cell Immunity. Cell. 2019;177:556–571.e516. doi: 10.1016/j.cell.2019.02.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

622. Headley M.B., Bins A., Nip A., Roberts E.W., Looney M.R., Gerard A., Krummel M.F. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature. 2016;531:513–517. doi: 10.1038/nature16985. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

623. Barry K.C., Hsu J., Broz M.L., Cueto F.J., Binnewies M., Combes A.J., Nelson A.E., Loo K., Kumar R., Rosenblum M.D., et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 2018;24:1178–1191. doi: 10.1038/s41591-018-0085-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

624. Joyce J.A., Fearon D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science (N. Y.) 2015;348:74–80. doi: 10.1126/science.aaa6204. [PubMed] [CrossRef] [Google Scholar]

625. Villablanca E.J., Raccosta L., Zhou D., Fontana R., Maggioni D., Negro A., Sanvito F., Ponzoni M., Valentinis B., Bregni M., et al. Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 2010;16:98–105. doi: 10.1038/nm.2074. [PubMed] [CrossRef] [Google Scholar]

626. Spranger S., Bao R., Gajewski T.F. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–235. doi: 10.1038/nature14404. [PubMed] [CrossRef] [Google Scholar]

627. Bol K.F., Schreibelt G., Rabold K., Wculek S.K., Schwarze J.K., Dzionek A., Teijeira A., Kandalaft L.E., Romero P., Coukos G., et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J. Immunother. Cancer. 2019;7:109. doi: 10.1186/s40425-019-0580-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

628. Le Gall C.M., Weiden J., Eggermont L.J., Figdor C.G. Dendritic cells in cancer immunotherapy. Nat. Mater. 2018;17:474–475. doi: 10.1038/s41563-018-0093-6. [PubMed] [CrossRef] [Google Scholar]

629. Steinman R.M., Cohn Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 1974;139:380–397. doi: 10.1084/jem.139.2.380. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

630. Wimmers F., Schreibelt G., Skold A.E., Figdor C.G., De Vries I.J. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets. Front. Immunol. 2014;5:165. doi: 10.3389/fimmu.2014.00165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

631. Dorrie J., Schaft N., Schuler G., Schuler-Thurner B. Therapeutic Cancer Vaccination with Ex vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics. 2020;12:92. doi: 10.3390/pharmaceutics12020092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

632. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994;179:1109–1118. doi: 10.1084/jem.179.4.1109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

633. Schuler-Thurner B., Schultz E.S., Berger T.G., Weinlich G., Ebner S., Woerl P., Bender A., Feuerstein B., Fritsch P.O., Romani N., et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 2002;195:1279–1288. doi: 10.1084/jem.20012100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

634. de Vries I.J.M., Lesterhuis W.J., Scharenborg N.M., Engelen L.P.H., Ruiter D.J., Gerritsen M.-J.P., Croockewit S., Britten C.M., Torensma R., Adema G.J., et al. Maturation of Dendritic Cells Is a Prerequisite for Inducing Immune Responses in Advanced Melanoma Patients. Clin. Cancer Res. 2003;9:5091. [PubMed] [Google Scholar]

635. Dhodapkar M.V., Steinman R.M., Krasovsky J., Munz C., Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 2001;193:233–238. doi: 10.1084/jem.193.2.233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

636. Dhodapkar M.V., Steinman R.M., Sapp M., Desai H., Fossella C., Krasovsky J., Donahoe S.M., Dunbar P.R., Cerundolo V., Nixon D.F., et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Investig. 1999;104:173–180. doi: 10.1172/JCI6909. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

637. Jonuleit H., Kuhn U., Muller G., Steinbrink K., Paragnik L., Schmitt E., Knop J., Enk A.H. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 1997;27:3135–3142. doi: 10.1002/eji.1830271209. [PubMed] [CrossRef] [Google Scholar]

638. Romani N., Reider D., Heuer M., Ebner S., Kampgen E., Eibl B., Niederwieser D., Schuler G. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods. 1996;196:137–151. doi: 10.1016/0022-1759(96)00078-6. [PubMed] [CrossRef] [Google Scholar]

639. Chang A.E., Redman B.G., Whitfield J.R., Nickoloff B.J., Braun T.M., Lee P.P., Geiger J.D., Mule J.J. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002;8:1021–1032. [PubMed] [Google Scholar]

640. Condon C., Watkins S.C., Celluzzi C.M., Thompson K., Falo L.D., Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nat. Med. 1996;2:1122–1128. doi: 10.1038/nm1096-1122. [PubMed] [CrossRef] [Google Scholar]

641. Nestle F.O., Alijagic S., Gilliet M., Sun Y., Grabbe S., Dummer R., Burg G., Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998;4:328–332. doi: 10.1038/nm0398-328. [PubMed] [CrossRef] [Google Scholar]

642. Schaft N., Wellner V., Wohn C., Schuler G., Dorrie J. CD8(+) T-cell priming and boosting: More antigen-presenting DC, or more antigen per DC? Cancer Immunol. Immunother. 2013;62:1769–1780. doi: 10.1007/s00262-013-1481-z. [PubMed] [CrossRef] [Google Scholar]

643. Schuler G. Dendritic cells in cancer immunotherapy. Eur. J. Immunol. 2010;40:2123–2130. doi: 10.1002/eji.201040630. [PubMed] [CrossRef] [Google Scholar]

644. Schuler P.J., Harasymczuk M., Visus C., Deleo A., Trivedi S., Lei Y., Argiris A., Gooding W., Butterfield L.H., Whiteside T.L., et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:2433–2444. doi: 10.1158/1078-0432.CCR-13-2617. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

645. Tada F., Abe M., Hirooka M., Ikeda Y., Hiasa Y., Lee Y., Jung N.C., Lee W.B., Lee H.S., Bae Y.S., et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol. 2012;41:1601–1609. doi: 10.3892/ijo.2012.1626. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

646. Osada T., Nagaoka K., Takahara M., Yang X.Y., Liu C.X., Guo H., Roy Choudhury K., Hobeika A., Hartman Z., Morse M.A., et al. Precision cancer immunotherapy: Optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors. J. Immunother. (Hagerstown Md. 1997) 2015;38:155–164. doi: 10.1097/CJI.0000000000000075. [PubMed] [CrossRef] [Google Scholar]

647. Vik-Mo E.O., Nyakas M., Mikkelsen B.V., Moe M.C., Due-Tonnesen P., Suso E.M., Saeboe-Larssen S., Sandberg C., Brinchmann J.E., Helseth E., et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 2013;62:1499–1509. doi: 10.1007/s00262-013-1453-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

648. Bosch N.C., Voll R.E., Voskens C.J., Gross S., Seliger B., Schuler G., Schaft N., Dorrie J. NF-kappaB activation triggers NK-cell stimulation by monocyte-derived dendritic cells. Ther. Adv. Med. Oncol. 2019;11 doi: 10.1177/1758835919891622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

649. Gerer K.F., Erdmann M., Hadrup S.R., Lyngaa R., Martin L.M., Voll R.E., Schuler-Thurner B., Schuler G., Schaft N., Hoyer S., et al. Preclinical evaluation of NF-kappaB-triggered dendritic cells expressing the viral oncogenic driver of Merkel cell carcinoma for therapeutic vaccination. Ther. Adv. Med. Oncol. 2017;9:451–464. doi: 10.1177/1758834017712630. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

650. Pfeiffer I.A., Hoyer S., Gerer K.F., Voll R.E., Knippertz I., Guckel E., Schuler G., Schaft N., Dorrie J. Triggering of NF-kappaB in cytokine-matured human DCs generates superior DCs for T-cell priming in cancer immunotherapy. Eur. J. Immunol. 2014;44:3413–3428. doi: 10.1002/eji.201344417. [PubMed] [CrossRef] [Google Scholar]

651. Aerts J., de Goeje P.L., Cornelissen R., Kaijen-Lambers M.E.H., Bezemer K., van der Leest C.H., Mahaweni N.M., Kunert A., Eskens F., Waasdorp C., et al. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018;24:766–776. doi: 10.1158/1078-0432.CCR-17-2522. [PubMed] [CrossRef] [Google Scholar]

652. Fucikova J., Podrazil M., Jarolim L., Bilkova P., Hensler M., Becht E., Gasova Z., Klouckova J., Kayserova J., Horvath R., et al. Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol. Immunother. 2018;67:89–100. doi: 10.1007/s00262-017-2068-x. [PubMed] [CrossRef] [Google Scholar]

653. Ge C., Li R., Song H., Geng T., Yang J., Tan Q., Song L., Wang Y., Xue Y., Li Z., et al. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer. 2017;17:884. doi: 10.1186/s12885-017-3859-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

654. Lee J.H., Tak W.Y., Lee Y., Heo M.K., Song J.S., Kim H.Y., Park S.Y., Bae S.H., Lee J.H., Heo J., et al. Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology. 2017;6:e1328335. doi: 10.1080/2162402X.2017.1328335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

655. Anguille S., Van de Velde A.L., Smits E.L., Van Tendeloo V.F., Juliusson G., Cools N., Nijs G., Stein B., Lion E., Van Driessche A., et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130:1713–1721. doi: 10.1182/blood-2017-04-780155. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

656. Gross S., Erdmann M., Haendle I., Voland S., Berger T., Schultz E., Strasser E., Dankerl P., Janka R., Schliep S., et al. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight. 2017;2 doi: 10.1172/jci.insight.91438. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

657. Lowenfeld L., Mick R., Datta J., Xu S., Fitzpatrick E., Fisher C.S., Fox K.R., DeMichele A., Zhang P.J., Weinstein S.P., et al. Dendritic Cell Vaccination Enhances Immune Responses and Induces Regression of HER2(pos) DCIS Independent of Route: Results of Randomized Selection Design Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:2961–2971. doi: 10.1158/1078-0432.CCR-16-1924. [PubMed] [CrossRef] [Google Scholar]

658. Rains N., Cannan R.J., Chen W., Stubbs R.S. Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology. 2001;48:347–351. [PubMed] [Google Scholar]

659. Nair S.K., Morse M., Boczkowski D., Cumming R.I., Vasovic L., Gilboa E., Lyerly H.K. Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann. Surg. 2002;235:540–549. doi: 10.1097/00000658-200204000-00013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

660. Dannull J., Su Z., Rizzieri D., Yang B.K., Coleman D., Yancey D., Zhang A., Dahm P., Chao N., Gilboa E., et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Investig. 2005;115:3623–3633. doi: 10.1172/JCI25947. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

661. Caruso D.A., Orme L.M., Neale A.M., Radcliff F.J., Amor G.M., Maixner W., Downie P., Hassall T.E., Tang M.L., Ashley D.M. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro Oncol. 2004;6:236–246. doi: 10.1215/S1152851703000668. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

662. Caruso D.A., Orme L.M., Amor G.M., Neale A.M., Radcliff F.J., Downie P., Tang M.L., Ashley D.M. Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer. 2005;103:1280–1291. doi: 10.1002/cncr.20911. [PubMed] [CrossRef] [Google Scholar]

663. Shindo Y., Hazama S., Maeda Y., Matsui H., Iida M., Suzuki N., Yoshimura K., Ueno T., Yoshino S., Sakai K., et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J. Transl. Med. 2014;12:175. doi: 10.1186/1479-5876-12-175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

664. Hsu F.J., Benike C., Fagnoni F., Liles T.M., Czerwinski D., Taidi B., Engleman E.G., Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996;2:52–58. doi: 10.1038/nm0196-52. [PubMed] [CrossRef] [Google Scholar]

665. Batich K.A., Reap E.A., Archer G.E., Sanchez-Perez L., Nair S.K., Schmittling R.J., Norberg P., Xie W., Herndon J.E., 2nd, Healy P., et al. Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:1898–1909. doi: 10.1158/1078-0432.CCR-16-2057. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

666. Palucka A.K., Ueno H., Connolly J., Kerneis-Norvell F., Blanck J.P., Johnston D.A., Fay J., Banchereau J. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. (Hagerstown Md. 1997) 2006;29:545–557. doi: 10.1097/01.cji.0000211309.90621.8b. [PubMed] [CrossRef] [Google Scholar]

667. Engell-Noerregaard L., Hansen T.H., Andersen M.H., Thor Straten P., Svane I.M. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: Assessment of correlation between clinical response and vaccine parameters. Cancer Immunol. Immunother. 2009;58:1–14. doi: 10.1007/s00262-008-0568-4. [PubMed] [CrossRef] [Google Scholar]

668. Granier C., De Guillebon E., Blanc C., Roussel H., Badoual C., Colin E., Saldmann A., Gey A., Oudard S., Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2:e000213. doi: 10.1136/esmoopen-2017-000213. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

669. Stronen E., Toebes M., Kelderman S., van Buuren M.M., Yang W., van Rooij N., Donia M., Boschen M.L., Lund-Johansen F., Olweus J., et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (N. Y.) 2016;352:1337–1341. doi: 10.1126/science.aaf2288. [PubMed] [CrossRef] [Google Scholar]

670. Wei S.C., Duffy C.R., Allison J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018;8:1069–1086. doi: 10.1158/2159-8290.CD-18-0367. [PubMed] [CrossRef] [Google Scholar]

671. Menendez P., Prosper F., Bueno C., Arbona C., San Miguel J.F., Garcia-Conde J., Sola C., Hornedo J., Cortes-Funes H., Orfao A. Sequential analysis of CD34+ and CD34- cell subsets in peripheral blood and leukapheresis products from breast cancer patients mobilized with SCF plus G-CSF and cyclophosphamide. Leukemia. 2001;15:430–439. doi: 10.1038/sj.leu.2402051. [PubMed] [CrossRef] [Google Scholar]

672. Paczesny S., Li Y.P., Li N., Latger-Cannard V., Marchal L., Ou-Yang J.P., Bordigoni P., Stoltz J.F., Eljaafari A. Efficient generation of CD34+ progenitor-derived dendritic cells from G-CSF-mobilized peripheral mononuclear cells does not require hematopoietic stem cell enrichment. J. Leukoc. Boil. 2007;81:957–967. doi: 10.1189/jlb.0406296. [PubMed] [CrossRef] [Google Scholar]

673. Ratta M., Rondelli D., Fortuna A., Curti A., Fogli M., Fagnoni F., Martinelli G., Terragna C., Tura S., Lemoli R.M. Generation and functional characterization of human dendritic cells derived from CD34 cells mobilized into peripheral blood: Comparison with bone marrow CD34+ cells. Br. J. Haematol. 1998;101:756–765. doi: 10.1046/j.1365-2141.1998.00771.x. [PubMed] [CrossRef] [Google Scholar]

674. Caux C., Massacrier C., Vanbervliet B., Dubois B., Durand I., Cella M., Lanzavecchia A., Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood. 1997;90:1458–1470. doi: 10.1182/blood.V90.4.1458. [PubMed] [CrossRef] [Google Scholar]

675. Caux C., Vanbervliet B., Massacrier C., Dezutter-Dambuyant C., de Saint-Vis B., Jacquet C., Yoneda K., Imamura S., Schmitt D., Banchereau J. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J. Exp. Med. 1996;184:695–706. doi: 10.1084/jem.184.2.695. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

676. Banchereau J., Palucka A.K., Dhodapkar M., Burkeholder S., Taquet N., Rolland A., Taquet S., Coquery S., Wittkowski K.M., Bhardwaj N., et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–6458. [PubMed] [Google Scholar]

677. Palucka A.K., Ueno H., Fay J., Banchereau J. Dendritic cells: A critical player in cancer therapy? J. Immunother. (Hagerstown Md. 1997) 2008;31:793–805. doi: 10.1097/CJI.0b013e31818403bc. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

678. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer. 2012;12:265–277. doi: 10.1038/nrc3258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

679. Ratzinger G., Baggers J., de Cos M.A., Yuan J.D., Dao T., Reagan J.L., Munz C., Heller G., Young J.W. Mature human langerhans cells derived from CD34(+) hematopoietic progenitors stimulate greater cytolytic. T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells. J. Immunol. 2005;174:2780–2791. doi: 10.4049/jimmunol.174.6.3818. [PubMed] [CrossRef] [Google Scholar]

680. Yuan J., Latouche J.B., Reagan J.L., Heller G., Riviere I., Sadelain M., Young J.W. Langerhans cells derived from genetically modified human CD34+ hemopoietic progenitors are more potent than peptide-pulsed Langerhans cells for inducing antigen-specific CD8+ cytolytic T lymphocyte responses. J. Immunol. (Baltim. Md. 1950) 2005;174:758–766. doi: 10.4049/jimmunol.174.2.758. [PubMed] [CrossRef] [Google Scholar]

681. Fay J.W., Palucka A.K., Paczesny S., Dhodapkar M., Johnston D.A., Burkeholder S., Ueno H., Banchereau J. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. 2006;55:1209–1218. doi: 10.1007/s00262-005-0106-6. [PubMed] [CrossRef] [Google Scholar]

682. Paczesny S., Banchereau J., Wittkowski K.M., Saracino G., Fay J., Palucka A.K. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 2004;199:1503–1511. doi: 10.1084/jem.20032118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

683. Lee J., Breton G., Aljoufi A., Zhou Y.J., Puhr S., Nussenzweig M.C., Liu K. Clonal analysis of human dendritic cell progenitor using a stromal cell culture. J. Immunol. Methods. 2015;425:21–26. doi: 10.1016/j.jim.2015.06.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

684. Anselmi G., Vaivode K., Dutertre C.A., Bourdely P., Missolo-Koussou Y., Newell E., Hickman O., Wood K., Saxena A., Helft J., et al. Engineered niches support the development of human dendritic cells in humanized mice. Nat. Commun. 2020;11:2054. doi: 10.1038/s41467-020-15937-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

685. Breton G., Lee J., Zhou Y.J., Schreiber J.J., Keler T., Puhr S., Anandasabapathy N., Schlesinger S., Caskey M., Liu K., et al. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 2015;212:401–413. doi: 10.1084/jem.20141441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

686. Marroquin C.E., Westwood J.A., Lapointe R., Mixon A., Wunderlich J.R., Caron D., Rosenberg S.A., Hwu P. Mobilization of dendritic cell precursors in patients with cancer by flt3 ligand allows the generation of higher yields of cultured dendritic cells. J. Immunother. (Hagerstown Md. 1997) 2002;25:278–288. doi: 10.1097/00002371-200205000-00011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

687. Bhardwaj N., Pavlick A.C., Ernstoff M.S., Hanks B.A., Albertini M.R., Luke J.J., Yellin M.J., Keler T., Davis T.A., Crocker A., et al. A Phase II Randomized Study of CDX-1401, a Dendritic Cell Targeting NY-ESO-1 Vaccine, in Patients with Malignant Melanoma Pre-Treated with Recombinant CDX-301, a Recombinant Human Flt3 Ligand. J. Clin. Oncol. 2016;34:9589. doi: 10.1200/JCO.2016.34.15_suppl.9589. [CrossRef] [Google Scholar]

688. Schreibelt G., Bol K.F., Westdorp H., Wimmers F., Aarntzen E.H., Duiveman-de Boer T., van de Rakt M.W., Scharenborg N.M., de Boer A.J., Pots J.M., et al. Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016;22:2155–2166. doi: 10.1158/1078-0432.CCR-15-2205. [PubMed] [CrossRef] [Google Scholar]

689. Prue R.L., Vari F., Radford K.J., Tong H., Hardy M.Y., D’Rozario R., Waterhouse N.J., Rossetti T., Coleman R., Tracey C., et al. A phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A*0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J. Immunother. (Hagerstown Md. 1997) 2015;38:71–76. doi: 10.1097/CJI.0000000000000063. [PubMed] [CrossRef] [Google Scholar]

690. Sabado R.L., Balan S., Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27:74–95. doi: 10.1038/cr.2016.157. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

691. Huber A., Dammeijer F., Aerts J., Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front. Immunol. 2018;9:2804. doi: 10.3389/fimmu.2018.02804. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

692. Kraal G., Breel M., Janse M., Bruin G. Langerhans’ cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody. J. Exp. Med. 1986;163:981–997. doi: 10.1084/jem.163.4.981. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

693. Nussenzweig M.C., Steinman R.M., Witmer M.D., Gutchinov B. A monoclonal antibody specific for mouse dendritic cells. Proc. Natl. Acad. Sci. USA. 1982;79:161–165. doi: 10.1073/pnas.79.1.161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

694. Bonifaz L.C., Bonnyay D.P., Charalambous A., Darguste D.I., Fujii S., Soares H., Brimnes M.K., Moltedo B., Moran T.M., Steinman R.M. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 2004;199:815–824. doi: 10.1084/jem.20032220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

695. Cruz L.J., Rosalia R.A., Kleinovink J.W., Rueda F., Lowik C.W., Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: A comparative study. J. Control. Release Off. J. Control. Release Soc. 2014;192:209–218. doi: 10.1016/j.jconrel.2014.07.040. [PubMed] [CrossRef] [Google Scholar]

696. Price J.D., Hotta-Iwamura C., Zhao Y., Beauchamp N.M., Tarbell K.V. DCIR2+ cDC2 DCs and Zbtb32 Restore CD4+ T-Cell Tolerance and Inhibit Diabetes. Diabetes. 2015;64:3521–3531. doi: 10.2337/db14-1880. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

697. Tullett K.M., Leal Rojas I.M., Minoda Y., Tan P.S., Zhang J.G., Smith C., Khanna R., Shortman K., Caminschi I., Lahoud M.H., et al. Targeting CLEC9A delivers antigen to human CD141(+) DC for CD4(+) and CD8(+)T cell recognition. JCI Insight. 2016;1:e87102. doi: 10.1172/jci.insight.87102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

698. Castro F.V., Tutt A.L., White A.L., Teeling J.L., James S., French R.R., Glennie M.J. CD11c provides an effective immunotarget for the generation of both CD4 and CD8 T cell responses. Eur. J. Immunol. 2008;38:2263–2273. doi: 10.1002/eji.200838302. [PubMed] [CrossRef] [Google Scholar]

699. Delneste Y., Magistrelli G., Gauchat J., Haeuw J., Aubry J., Nakamura K., Kawakami-Honda N., Goetsch L., Sawamura T., Bonnefoy J., et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity. 2002;17:353–362. doi: 10.1016/S1074-7613(02)00388-6. [PubMed] [CrossRef] [Google Scholar]

700. Dickgreber N., Stoitzner P., Bai Y., Price K.M., Farrand K.J., Manning K., Angel C.E., Dunbar P.R., Ronchese F., Fraser J.D., et al. Targeting antigen to MHC class II molecules promotes efficient cross-presentation and enhances immunotherapy. J. Immunol. (Baltim. Md. 1950) 2009;182:1260–1269. doi: 10.4049/jimmunol.182.3.1260. [PubMed] [CrossRef] [Google Scholar]

701. Macho-Fernandez E., Cruz L.J., Ghinnagow R., Fontaine J., Bialecki E., Frisch B., Trottein F., Faveeuw C. Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses. J. Immunol. (Baltim. Md. 1950) 2014;193:961–969. doi: 10.4049/jimmunol.1303029. [PubMed] [CrossRef] [Google Scholar]

702. Mahnke K., Qian Y., Fondel S., Brueck J., Becker C., Enk A.H. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res. 2005;65:7007–7012. doi: 10.1158/0008-5472.CAN-05-0938. [PubMed] [CrossRef] [Google Scholar]

703. Sancho D., Mourao-Sa D., Joffre O.P., Schulz O., Rogers N.C., Pennington D.J., Carlyle J.R., Reis e Sousa C. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Investig. 2008;118:2098–2110. doi: 10.1172/JCI34584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

704. Tagliani E., Guermonprez P., Sepulveda J., Lopez-Bravo M., Ardavin C., Amigorena S., Benvenuti F., Burrone O.R. Selection of an antibody library identifies a pathway to induce immunity by targeting CD36 on steady-state CD8 alpha+ dendritic cells. J. Immunol. (Baltim. Md. 1950) 2008;180:3201–3209. doi: 10.4049/jimmunol.180.5.3201. [PubMed] [CrossRef] [Google Scholar]

705. van Broekhoven C.L., Parish C.R., Demangel C., Britton W.J., Altin J.G. Targeting dendritic cells with antigen-containing liposomes: A highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res. 2004;64:4357–4365. doi: 10.1158/0008-5472.CAN-04-0138. [PubMed] [CrossRef] [Google Scholar]

706. Wei H., Wang S., Zhang D., Hou S., Qian W., Li B., Guo H., Kou G., He J., Wang H., et al. Targeted delivery of tumor antigens to activated dendritic cells via CD11c molecules induces potent antitumor immunity in mice. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009;15:4612–4621. doi: 10.1158/1078-0432.CCR-08-3321. [PubMed] [CrossRef] [Google Scholar]

707. Krishna M., Nadler S.G. Immunogenicity to Biotherapeutics—The Role of Anti-drug Immune Complexes. Front. Immunol. 2016;7:21. doi: 10.3389/fimmu.2016.00021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

708. Pratt K.P. Anti-Drug Antibodies: Emerging Approaches to Predict, Reduce or Reverse Biotherapeutic Immunogenicity. Antibodies. 2018;7:19. doi: 10.3390/antib7020019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

709. Bowers P.M., Neben T.Y., Tomlinson G.L., Dalton J.L., Altobell L., Zhang X., Macomber J.L., Wu B.F., Toobian R.M., McConnell A.D., et al. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation. J. Boil. Chem. 2013;288:7688–7696. doi: 10.1074/jbc.M112.445502. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

710. Clavero-Alvarez A., Di Mambro T., Perez-Gaviro S., Magnani M., Bruscolini P. Humanization of Antibodies using a Statistical Inference Approach. Sci. Rep. 2018;8:14820. doi: 10.1038/s41598-018-32986-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

711. Safdari Y., Farajnia S., Asgharzadeh M., Khalili M. Antibody humanization methods—A review and update. Biotechnol. Genet. Eng. Rev. 2013;29:175–186. doi: 10.1080/02648725.2013.801235. [PubMed] [CrossRef] [Google Scholar]

712. Lee E.C., Liang Q., Ali H., Bayliss L., Beasley A., Bloomfield-Gerdes T., Bonoli L., Brown R., Campbell J., Carpenter A., et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 2014;32:356–363. doi: 10.1038/nbt.2825. [PubMed] [CrossRef] [Google Scholar]

713. Macdonald L.E., Karow M., Stevens S., Auerbach W., Poueymirou W.T., Yasenchak J., Frendewey D., Valenzuela D.M., Giallourakis C.C., Alt F.W., et al. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc. Natl. Acad. Sci. USA. 2014;111:5147–5152. doi: 10.1073/pnas.1323896111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

714. Mendez M.J., Green L.L., Corvalan J.R., Jia X.C., Maynard-Currie C.E., Yang X.D., Gallo M.L., Louie D.M., Lee D.V., Erickson K.L., et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Genet. 1997;15:146–156. doi: 10.1038/ng0297-146. [PubMed] [CrossRef] [Google Scholar]

715. Murphy A.J., Macdonald L.E., Stevens S., Karow M., Dore A.T., Pobursky K., Huang T.T., Poueymirou W.T., Esau L., Meola M., et al. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc. Natl. Acad. Sci. USA. 2014;111:5153–5158. doi: 10.1073/pnas.1324022111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

716. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119:5640–5649. doi: 10.1182/blood-2012-01-380121. [PubMed] [CrossRef] [Google Scholar]

717. Nimmerjahn F., Bruhns P., Horiuchi K., Ravetch J.V. FcgammaRIV: A novel FcR with distinct IgG subclass specificity. Immunity. 2005;23:41–51. doi: 10.1016/j.immuni.2005.05.010. [PubMed] [CrossRef] [Google Scholar]

718. Chen T.F., Sazinsky S.L., Houde D., DiLillo D.J., Bird J., Li K.K., Cheng G.T., Qiu H., Engen J.R., Ravetch J.V., et al. Engineering Aglycosylated IgG Variants with Wild-Type or Improved Binding Affinity to Human Fc Gamma RIIA and Fc Gamma RIIIAs. J. Mol. Biol. 2017;429:2528–2541. doi: 10.1016/j.jmb.2017.07.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

719. Kao D., Danzer H., Collin M., Gross A., Eichler J., Stambuk J., Lauc G., Lux A., Nimmerjahn F. A Monosaccharide Residue Is Sufficient to Maintain Mouse and Human IgG Subclass Activity and Directs IgG Effector Functions to Cellular Fc Receptors. Cell Rep. 2015;13:2376–2385. doi: 10.1016/j.celrep.2015.11.027. [PubMed] [CrossRef] [Google Scholar]

720. Subedi G.P., Barb A.W. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Structure. 2015;23:1573–1583. doi: 10.1016/j.str.2015.06.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

721. Walker M.R., Lund J., Thompson K.M., Jefferis R. Aglycosylation of human IgG1 and IgG3 monoclonal antibodies can eliminate recognition by human cells expressing Fc gamma RI and/or Fc gamma RII receptors. Biochem. J. 1989;259:347–353. doi: 10.1042/bj2590347. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

722. Benito-Villalvilla C., Soria I., Subiza J.L., Palomares O. Novel vaccines targeting dendritic cells by coupling allergoids to mannan. Allergo J. Int. 2018;27:256–262. doi: 10.1007/s40629-018-0069-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

723. Frenz T., Grabski E., Duran V., Hozsa C., Stepczynska A., Furch M., Gieseler R.K., Kalinke U. Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. Eur. J. pharm. Biopharm. Off. J. Arb. Fur Pharm. Verfahrenstechnik e.V. 2015;95:13–17. doi: 10.1016/j.ejpb.2015.02.008. [PubMed] [CrossRef] [Google Scholar]

724. Johannssen T., Lepenies B. Glycan-Based Cell Targeting To Modulate Immune Responses. Trends Biotechnol. 2017;35:334–346. doi: 10.1016/j.tibtech.2016.10.002. [PubMed] [CrossRef] [Google Scholar]

725. Wamhoff E.C., Schulze J., Bellmann L., Rentzsch M., Bachem G., Fuchsberger F.F., Rademacher J., Hermann M., Del Frari B., van Dalen R., et al. A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS Cent. Sci. 2019;5:808–820. doi: 10.1021/acscentsci.9b00093. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

726. Donadei A., Gallorini S., Berti F., O’Hagan D.T., Adamo R., Baudner B.C. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic beta-Glucan Dectin-1 Agonist to Protein Antigen. Mol. Pharm. 2015;12:1662–1672. doi: 10.1021/acs.molpharmaceut.5b00072. [PubMed] [CrossRef] [Google Scholar]

727. Garcia-Vallejo J.J., Bloem K., Knippels L.M., Garssen J., van Vliet S.J., van Kooyk Y. The Consequences of Multiple Simultaneous C-Type Lectin-Ligand Interactions: DCIR Alters the Endo-Lysosomal Routing of DC-SIGN. Front. Immunol. 2015;6:87. doi: 10.3389/fimmu.2015.00087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

728. Streng-Ouwehand I., Ho N.I., Litjens M., Kalay H., Boks M.A., Cornelissen L.A., Kaur Singh S., Saeland E., Garcia-Vallejo J.J., Ossendorp F.A., et al. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells. eLife. 2016;5:e11765. doi: 10.7554/eLife.11765. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

729. van Kooyk Y., Unger W.W., Fehres C.M., Kalay H., Garcia-Vallejo J.J. Glycan-based DC-SIGN targeting vaccines to enhance antigen cross-presentation. Mol. Immunol. 2013;55:143–145. doi: 10.1016/j.molimm.2012.10.031. [PubMed] [CrossRef] [Google Scholar]

730. Wolfert M.A., Boons G.J. Adaptive immune activation: Glycosylation does matter. Nat. Chem. Biol. 2013;9:776–784. doi: 10.1038/nchembio.1403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

731. Platt C.D., Ma J.K., Chalouni C., Ebersold M., Bou-Reslan H., Carano R.A., Mellman I., Delamarre L. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl. Acad. Sci. USA. 2010;107:4287–4292. doi: 10.1073/pnas.0910609107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

732. Bourquin C., Anz D., Zwiorek K., Lanz A.L., Fuchs S., Weigel S., Wurzenberger C., von der Borch P., Golic M., Moder S., et al. Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity. J. Immunol. (Baltim. Md. 1950) 2008;181:2990–2998. doi: 10.4049/jimmunol.181.5.2990. [PubMed] [CrossRef] [Google Scholar]

733. Kawagoe T., Takeuchi O., Takabatake Y., Kato H., Isaka Y., Tsujimura T., Akira S. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat. Immunol. 2009;10:965–972. doi: 10.1038/ni.1771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

734. Storni T., Ruedl C., Schwarz K., Schwendener R.A., Renner W.A., Bachmann M.F. Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J. Immunol. (Baltim. Md. 1950) 2004;172:1777–1785. doi: 10.4049/jimmunol.172.3.1777. [PubMed] [CrossRef] [Google Scholar]

735. Huang B., Zhao J., Unkeless J.C., Feng Z.H., Xiong H. TLR signaling by tumor and immune cells: A double-edged sword. Oncogene. 2008;27:218–224. doi: 10.1038/sj.onc.1210904. [PubMed] [CrossRef] [Google Scholar]

736. Blander J.M., Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature. 2006;440:808–812. doi: 10.1038/nature04596. [PubMed] [CrossRef] [Google Scholar]

737. Lang K.S., Recher M., Junt T., Navarini A.A., Harris N.L., Freigang S., Odermatt B., Conrad C., Ittner L.M., Bauer S., et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med. 2005;11:138–145. doi: 10.1038/nm1176. [PubMed] [CrossRef] [Google Scholar]

738. Mills K.H. TLR-dependent T cell activation in autoimmunity. Nat. Rev. Immunol. 2011;11:807–822. doi: 10.1038/nri3095. [PubMed] [CrossRef] [Google Scholar]

739. Sacher T., Knolle P., Nichterlein T., Arnold B., Hammerling G.J., Limmer A. CpG-ODN-induced inflammation is sufficient to cause T-cell-mediated autoaggression against hepatocytes. Eur. J. Immunol. 2002;32:3628–3637. doi: 10.1002/1521-4141(200212)32:12<3628::AID-IMMU3628>3.0.CO;2-E. [PubMed] [CrossRef] [Google Scholar]

740. Barbuto S., Idoyaga J., Vila-Perello M., Longhi M.P., Breton G., Steinman R.M., Muir T.W. Induction of innate and adaptive immunity by delivery of poly dA:dT to dendritic cells. Nat. Chem. Biol. 2013;9:250–256. doi: 10.1038/nchembio.1186. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

741. Heit A., Schmitz F., O’Keeffe M., Staib C., Busch D.H., Wagner H., Huster K.M. Protective CD8 T cell immunity triggered by CpG-protein conjugates competes with the efficacy of live vaccines. J. Immunol. (Baltim. Md. 1950) 2005;174:4373–4380. doi: 10.4049/jimmunol.174.7.4373. [PubMed] [CrossRef] [Google Scholar]

742. Kreutz M., Giquel B., Hu Q., Abuknesha R., Uematsu S., Akira S., Nestle F.O., Diebold S.S. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity. PLoS ONE. 2012;7:e40208. doi: 10.1371/journal.pone.0040208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

743. Badiee A., Davies N., McDonald K., Radford K., Michiue H., Hart D., Kato M. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine. 2007;25:4757–4766. doi: 10.1016/j.vaccine.2007.04.029. [PubMed] [CrossRef] [Google Scholar]

744. Brandao J.G., Scheper R.J., Lougheed S.M., Curiel D.T., Tillman B.W., Gerritsen W.R., van den Eertwegh A.J., Pinedo H.M., Haisma H.J., de Gruijl T.D. CD40-targeted adenoviral gene transfer to dendritic cells through the use of a novel bispecific single-chain Fv antibody enhances cytotoxic T cell activation. Vaccine. 2003;21:2268–2272. doi: 10.1016/S0264-410X(03)00050-1. [PubMed] [CrossRef] [Google Scholar]

745. Kwon Y.J., James E., Shastri N., Frechet J.M. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl. Acad. Sci. USA. 2005;102:18264–18268. doi: 10.1073/pnas.0509541102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

746. Shi G.N., Zhang C.N., Xu R., Niu J.F., Song H.J., Zhang X.Y., Wang W.W., Wang Y.M., Li C., Wei X.Q., et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials. 2017;113:191–202. doi: 10.1016/j.biomaterials.2016.10.047. [PubMed] [CrossRef] [Google Scholar]

747. Tacken P.J., Zeelenberg I.S., Cruz L.J., van Hout-Kuijer M.A., van de Glind G., Fokkink R.G., Lambeck A.J., Figdor C.G. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood. 2011;118:6836–6844. doi: 10.1182/blood-2011-07-367615. [PubMed] [CrossRef] [Google Scholar]

748. Thomann J.S., Heurtault B., Weidner S., Braye M., Beyrath J., Fournel S., Schuber F., Frisch B. Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials. 2011;32:4574–4583. doi: 10.1016/j.biomaterials.2011.03.015. [PubMed] [CrossRef] [Google Scholar]

749. Mukai Y., Yoshinaga T., Yoshikawa M., Matsuo K., Yoshikawa T., Matsuo K., Niki K., Yoshioka Y., Okada N., Nakagawa S. Induction of endoplasmic reticulum-endosome fusion for antigen cross-presentation induced by poly (gamma-glutamic acid) nanoparticles. J. Immunol. (Baltim. Md. 1950) 2011;187:6249–6255. doi: 10.4049/jimmunol.1001093. [PubMed] [CrossRef] [Google Scholar]

750. Nakamura T., Moriguchi R., Kogure K., Shastri N., Harashima H. Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol. Ther. J. Am. Soc. Gene Ther. 2008;16:1507–1514. doi: 10.1038/mt.2008.122. [PubMed] [CrossRef] [Google Scholar]

751. Yuba E., Harada A., Sakanishi Y., Watarai S., Kono K. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials. 2013;34:3042–3052. doi: 10.1016/j.biomaterials.2012.12.031. [PubMed] [CrossRef] [Google Scholar]

752. Wang H., Yu X., Guo C., Zuo D., Fisher P.B., Subjeck J.R., Wang X.Y. Enhanced endoplasmic reticulum entry of tumor antigen is crucial for cross-presentation induced by dendritic cell-targeted vaccination. J. Immunol. (Baltim. Md. 1950) 2013;191:6010–6021. doi: 10.4049/jimmunol.1302312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

753. Basha G., Novobrantseva T.I., Rosin N., Tam Y.Y., Hafez I.M., Wong M.K., Sugo T., Ruda V.M., Qin J., Klebanov B., et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol. Ther. J. Am. Soc. Gene Ther. 2011;19:2186–2200. doi: 10.1038/mt.2011.190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

754. Kenworthy R., Lambert D., Yang F., Wang N., Chen Z., Zhu H., Zhu F., Liu C., Li K., Tang H. Short-hairpin RNAs delivered by lentiviral vector transduction trigger RIG-I-mediated IFN activation. Nucleic Acids Res. 2009;37:6587–6599. doi: 10.1093/nar/gkp714. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

755. Kreutz M., Tacken P.J., Figdor C.G. Targeting dendritic cells--why bother? Blood. 2013;121:2836–2844. doi: 10.1182/blood-2012-09-452078. [PubMed] [CrossRef] [Google Scholar]

756. McCullough K.C., Bassi I., Demoulins T., Thomann-Harwood L.J., Ruggli N. Functional RNA delivery targeted to dendritic cells by synthetic nanoparticles. Ther. Deliv. 2012;3:1077–1099. doi: 10.4155/tde.12.90. [PubMed] [CrossRef] [Google Scholar]

757. Paulis L.E., Mandal S., Kreutz M., Figdor C.G. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr. Opin. Immunol. 2013;25:389–395. doi: 10.1016/j.coi.2013.03.001. [PubMed] [CrossRef] [Google Scholar]

758. van Dinther D., Stolk D.A., van de Ven R., van Kooyk Y., de Gruijl T.D., den Haan J.M.M. Targeting C-type lectin receptors: A high-carbohydrate diet for dendritic cells to improve cancer vaccines. J. Leukoc. Boil. 2017;102:1017–1034. doi: 10.1189/jlb.5MR0217-059RR. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

759. Turner M.L., Schnorfeil F.M., Brocker T. MicroRNAs regulate dendritic cell differentiation and function. J. Immunol. (Baltim. Md. 1950) 2011;187:3911–3917. doi: 10.4049/jimmunol.1101137. [PubMed] [CrossRef] [Google Scholar]

760. Zhou H., Wu L. The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell. 2017;8:501–513. doi: 10.1007/s13238-017-0398-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

761. Brigl M., Tatituri R.V., Watts G.F., Bhowruth V., Leadbetter E.A., Barton N., Cohen N.R., Hsu F.F., Besra G.S., Brenner M.B. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 2011;208:1163–1177. doi: 10.1084/jem.20102555. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

762. Fernandez N.C., Lozier A., Flament C., Ricciardi-Castagnoli P., Bellet D., Suter M., Perricaudet M., Tursz T., Maraskovsky E., Zitvogel L. Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 1999;5:405–411. doi: 10.1038/7403. [PubMed] [CrossRef] [Google Scholar]

763. Gottschalk C., Mettke E., Kurts C. The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8(+) T Cell Generation. Front. Immunol. 2015;6:379. doi: 10.3389/fimmu.2015.00379. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

764. Kitamura H., Iwakabe K., Yahata T., Nishimura S., Ohta A., Ohmi Y., Sato M., Takeda K., Okumura K., Van Kaer L., et al. The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 1999;189:1121–1128. doi: 10.1084/jem.189.7.1121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

765. Tahara H., Zitvogel L., Storkus W.J., Zeh H.J., 3rd, McKinney T.G., Schreiber R.D., Gubler U., Robbins P.D., Lotze M.T. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J. Immunol. (Baltim. Md. 1950) 1995;154:6466–6474. [PubMed] [Google Scholar]

766. Tatsumi T., Takehara T., Yamaguchi S., Sasakawa A., Miyagi T., Jinushi M., Sakamori R., Kohga K., Uemura A., Ohkawa K., et al. Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther. 2007;14:863–871. doi: 10.1038/sj.gt.3302941. [PubMed] [CrossRef] [Google Scholar]

767. Zitvogel L., Mayordomo J.I., Tjandrawan T., DeLeo A.B., Clarke M.R., Lotze M.T., Storkus W.J. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: Dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 1996;183:87–97. doi: 10.1084/jem.183.1.87. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

768. Cloosen S., Arnold J., Thio M., Bos G.M., Kyewski B., Germeraad W.T. Expression of tumor-associated differentiation antigens, MUC1 glycoforms and CEA, in human thymic epithelial cells: Implications for self-tolerance and tumor therapy. Cancer Res. 2007;67:3919–3926. doi: 10.1158/0008-5472.CAN-06-2112. [PubMed] [CrossRef] [Google Scholar]

769. de Jong V.M., Abreu J.R., Verrijn Stuart A.A., van der Slik A.R., Verhaeghen K., Engelse M.A., Blom B., Staal F.J., Gorus F.K., Roep B.O. Alternative splicing and differential expression of the islet autoantigen IGRP between pancreas and thymus contributes to immunogenicity of pancreatic islets but not diabetogenicity in humans. Diabetologia. 2013;56:2651–2658. doi: 10.1007/s00125-013-3034-6. [PubMed] [CrossRef] [Google Scholar]

770. Schumacher T.N., Schreiber R.D. Neoantigens in cancer immunotherapy. Science (N. Y.) 2015;348:69–74. doi: 10.1126/science.aaa4971. [PubMed] [CrossRef] [Google Scholar]

771. Sahin U., Derhovanessian E., Miller M., Kloke B.P., Simon P., Lower M., Bukur V., Tadmor A.D., Luxemburger U., Schrors B., et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–226. doi: 10.1038/nature23003. [PubMed] [CrossRef] [Google Scholar]

772. Yadav M., Jhunjhunwala S., Phung Q.T., Lupardus P., Tanguay J., Bumbaca S., Franci C., Cheung T.K., Fritsche J., Weinschenk T., et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014;515:572–576. doi: 10.1038/nature14001. [PubMed] [CrossRef] [Google Scholar]

773. Kenter G.G., Welters M.J., Valentijn A.R., Lowik M.J., Berends-van der Meer D.M., Vloon A.P., Essahsah F., Fathers L.M., Offringa R., Drijfhout J.W., et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 2009;361:1838–1847. doi: 10.1056/NEJMoa0810097. [PubMed] [CrossRef] [Google Scholar]

774. Ott P.A., Hu Z., Keskin D.B., Shukla S.A., Sun J., Bozym D.J., Zhang W., Luoma A., Giobbie-Hurder A., Peter L., et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221. doi: 10.1038/nature22991. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

775. Darvin P., Toor S.M., Sasidharan Nair V., Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018;50:1–11. doi: 10.1038/s12276-018-0191-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

776. Haslam A., Prasad V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open. 2019;2:e192535. doi: 10.1001/jamanetworkopen.2019.2535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

777. Gubin M.M., Zhang X., Schuster H., Caron E., Ward J.P., Noguchi T., Ivanova Y., Hundal J., Arthur C.D., Krebber W.J., et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–581. doi: 10.1038/nature13988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

778. Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D., Skora A.D., Luber B.S., Azad N.S., Laheru D., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

779. McGranahan N., Furness A.J., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J., Hiley C.T., et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (N. Y.) 2016;351:1463–1469. doi: 10.1126/science.aaf1490. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

780. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (N. Y.) 2015;348:124–128. doi: 10.1126/science.aaa1348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

781. Snyder A., Makarov V., Merghoub T., Yuan J., Zaretsky J.M., Desrichard A., Walsh L.A., Postow M.A., Wong P., Ho T.S., et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 2014;371:2189–2199. doi: 10.1056/NEJMoa1406498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

782. Van Allen E.M., Miao D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H.G., Goldinger S.M., et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science (N. Y.) 2015;350:207–211. doi: 10.1126/science.aad0095. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

783. Chen D.S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–330. doi: 10.1038/nature21349. [PubMed] [CrossRef] [Google Scholar]

784. Karaki S., Anson M., Tran T., Giusti D., Blanc C., Oudard S., Tartour E. Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines. 2016;4:37. doi: 10.3390/vaccines4040037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

785. Kather J.N., Suarez-Carmona M., Charoentong P., Weis C.A., Hirsch D., Bankhead P., Horning M., Ferber D., Kel I., Herpel E., et al. Topography of cancer-associated immune cells in human solid tumors. eLife. 2018;7:e36967. doi: 10.7554/eLife.36967. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

786. Heger L., Amon L., Lehmann C.H.K., Dudziak D. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2020. Systems Immunology Approaches for Understanding of Primary Dendritic Cell Subpopulations in the Past, Presence and Future. [CrossRef] [Google Scholar]